![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
This book represents a rather complicated history of encounters, changes in research interest and some very interesting results. Initially it is the very fruitful interaction of Ecology and Geology. The point of view of ecologists is extremely refreshing for hard science people. Interaction and inter-relationships are the focus of Ecology whereas the traditional sciences, such as Geology, have tried to isolate the natural phenomena so that thye could be studied in a more rigorous manner. The traditional sciences were of course natural science - based since the world to be observed was at the door step of everyone, mountains, weather patterns, plants and so forth. Chemistry and Physics were de ned after Mathematics in order to establish more precise and viable principles of the behavior of the materials that formed the world around mankind. It became quite clear that the observation of the natural world was too complicated to consider all of the possible variables which could affect an observed process or situation. The systems were simpli ed and taken into the laboratory in order to better master the phenomena observed. Physics c- cerned itself with non-reacting materials, subjected to essentially mechanical forces.
The mechanisms of magma movement, chemical differentiation and physical development, are derived from the geochemistry of igneous rocks, and from studying exposures of deep magmatic systems that have since solidified and been uplifted and exposed at the Earth's surface. The Ferrar Magmatic System of the McMurdo Dry Valleys in Antarctica provides an unparalleled example of a complete magmatic-volcanic system exposed in unprecedented detail. This book provides a unique and usual three-dimensional detailed examination of this system, providing insight into many magmatic processes normally unobservable, in particular how basaltic magma moves upwards through the crust, how it entrains, carries and deposits loads of crystals from great depths, and how this all contributes to Earth's evolution. Providing an explanation of how magmatic systems operate and how igneous rocks form, this is an invaluable resource ideal for researchers and graduate students in magma physics, igneous petrology, volcanology, and geochemistry.
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country's general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China's geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China's geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
Over the last few decades many studies have focused on the oxygen depletion of coastal and oceanic waters. An understanding of the processes involved is fundamental to assess the effects of global and climatic changes and to support an ecosystem approach to adaptive environmental management for coastal seas and ocean basins. This timely book presents the state-of-the-art of our knowledge of the nature and chemical structure of redox interfaces in a marine water column, oxygen depletion and connected processes. The structures of the redox layers, including the distribution of certain parameters and microbiological features, are described in detail. The volume also covers studies devoted to the interannual variability of some oxygen-depleted systems, modeling and new developments in observation techniques. In addition, it identifies remaining gaps in our knowledge of the cycling of chemical elements in changing redox conditions. The chapters are based on extensive observational data, collected by the authors during sea and shore expeditions, on archive data, and on a broad range of scientific literature.
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
Over the last fifteen years, space-based exploration of the solar system has increased dramatically, with more and more sophisticated orbiters and landers being sent to Mars. This intense period, rich in unprecedented scientific results, has led to immense progress in our perception of Mars and of its evolution over geological time. In parallel, advances in numerical simulations and laboratory experiments also shed new light on the geochemical evolution of the planet Mars. The ISSI-Europlanet Workshop entitled "Quantifying the Martian Geochemical Reservoirs" was held in Bern in April 2011 with the objective to create a diverse interdisciplinary forum composed of scientists directly involved in space-based exploration of the Martian surface, meteoriticists studying SNC meteorites, and planetary and/or Earth scientists simulating, numerically or experimentally, the physical and chemical processes occurring on or within Mars. The chapters of this book provide an overview of current knowledge of the past and present Martian geochemical reservoirs, from the accretionary history to the secondary alteration processes at the surface. In addition to the detailed description of data from Mars and the methods used to obtain them, the contributions also emphasize comparison with features on Earth, providing a perspective on the extent to which our knowledge of terrestrial systems influences interpretation of data from Mars. Areas that would benefit from future work and measurements are also identified, providing a view of the short-term and long-term future of the study of Mars. This collection of chapters constitutes a timely perspective on current knowledge and thinking concerning the geochemical evolution of Mars, providing context and a valuable reference point for even more exciting future discoveries. It is aimed at graduate students and researchers active in geochemistry and space science. Previously published in Space Science Reviews, Vol. 174/1-4, 2013.
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
This third edition of the book has been completely re-written, providing a wider scope and enhanced coverage. It covers the general principles of the natural occurrence, pollution sources, chemical analysis, soil chemical behaviour and soil-plant-animal relationships of heavy metals and metalloids, followed by a detailed coverage of 21 individual elements, including: antimony, arsenic, barium, cadmium, chromium, cobalt, copper, gold, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, tungsten, uranium, vanadium and zinc. The book is highly relevant for those involved in environmental science, soil science, geochemistry, agronomy, environmental health, and environmental engineering, including specialists responsible for the management and clean-up of contaminated land.
The Llobregat belongs to the most thoroughly studied rivers in Europe and is a paradigm of the confluence of human and natural disturbances in a single basin. Because of its location in a very densely populated region and its Mediterranean character, the Llobregat supports a mixture of irregular flow, water abstraction, excess nutrients, mining debris, and a wide array of pollutants. The aquatic organisms strive to survive in a dramatically changing river that passes through a succession of dams, weirs and channels. The long-term river monitoring as well as the research that has been carried out in the river for a long time have provided an extensive knowledge of these disturbances and their effects on the biological communities. This book highlights the available information, with emphasis on the hydrological, chemical and biological elements interspersed in the river. Experts in the field discuss the main nutrient patterns and pollutant occurrence and the responses of the biological quality elements as well as the river ecosystem to the overall natural and man-made influences.
The book will include contributions of the state of the art of quartz raw materials (deposits and properties) and their analytics. The chapters are presented by leading scientists in the quartz field. The presentations cover the main interrelations between genesis of quartz - formation of specific properties - analytics - industrial applications of SiO2 raw materials.
This book is a companion to "Natural Gas Hydrate in Oceanic and Permafrost Environments" (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as 'hydrate'), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.
This book reviews the geochemical and petrological characteristics of potassic igneous rock complexes, and investigates the different tectonic settings in which these rocks occur. The authors provide an overview and classification of these rocks and elucidate the geochemical differences between barren and mineralized potassic igneous complexes. High-K rocks host a number of epithermal gold and porphyry copper-gold deposits. In recent years, there has also been growing recognition of an association of such rocks with iron-oxide copper-gold (IOCG) deposits, intrusion-related gold deposits (IRGDs) and possibly even Carlin-type gold deposits. This book is not only relevant to academic petrologists working on alkaline rocks, but also to exploration geologists prospecting for epithermal gold and/or porphyry copper-gold deposits in modern and ancient terrains. This fourth, updated and expanded edition incorporates new data and references from Africa, Australia, Brazil, China, Greece, Iran, Mongolia, North America, Russia and Turkey, including new maps and sections and new color plates of high-grade gold-copper ore from major deposits hosted by potassic igneous rocks.
This book covers the distribution, hydrochemistry and geophysics of the naturally occurring stable isotopes namely: hydrogen, oxygen and radioactive tritium, carbon and other cosmogenic and radiogenic isotopes of the uranium-thorium series, in the oceans and in atmosphere, the earth's surface and ground water. The use of environmental isotopes in the three main areas of natural waters is discussed: origin, dynamics and residence time in natural reservoirs. The origin of the hydrosphere is examined in the light of isotopic, new cosmochemical and recent theoretical results. The book will be of interest to scientists and researchers who use environmental isotopes in solving scientific and practical problems in hydrology, hydrogeology, oceanography, meteorology, hydrogeochemistry and cosmochemistry. Lecturers, students and postgraduates in these fields will also find it useful.
This book combines soil science, earth science, and environmental geochemistry, providing comprehensive background information for specialists interested in chemical-induced changes in the soil-subsurface system. Readers are introduced to the chemistry of contaminants that often disturb the natural soil-subsurface equilibrium as a result of human activity. While the soil-subsurface system has in many cases been affected by human impact, the effects of chemical contaminants on the actual matrix and properties have been largely neglected. The major focus of the book is on changes to the soil-subsurface matrix and properties caused by chemical pollution. By integrating results available in the literature, we observe that chemical pollutants may lead to the irreversible formation of a new soil-subsurface regime characterized by a matrix and properties different than those of the natural regime. In contrast to the geological time scales dictating natural changes to the matrix and properties of the soil-subsurface system, the time scale associated with chemical pollutant-induced changes is far shorter and extends over a "human lifetime scale." The numerous examples presented in the book confirm that chemical contamination should be considered as an additional factor in the formation of a contemporary soil-subsurface regime that is different than that of the pristine system.
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
Stable Isotope Geochemistry is an introduction to the use of stable isotopes in the geosciences. For students and scientists alike the book will be a primary source of information with regard to how and where stable isotopes can be used to solve geological problems. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. In the last decade, major advances in multicollector-ICP-mass-spectrometry enable the precise determination of a wide range of transition and heavy elements. Progress in analysing the rare isotopes of certain elements allows the distinction between mass-dependent and mass-independent fractionations. These major advances in analytical techniques make an extended new edition necessary. Special emphasis has been given to the growing field of “non-traditional” isotope systems. Many new references have been added, which will enable quick access to recent literature.
This is the first comprehensive volume on cave sediments. It provides case-studies from around the world, gives guidance on appropriate applications of techniques, and their limitations, synthesizes methods that can be used to decipher complex deposits, and includes chemical deposits (speleothems) as well as clastic sediments. This book is for any geoscience researcher or student with interests in climate change, paleohydrology, karst geology, and sedimentology.
As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry.
This book includes a collection of chapters illustrating the application of geochemical methods to investigate the interactions between geological materials and fluids with humans. Examples include the incorporation and human health effects of inhaling lithogenic materials, the reactivity of biological fluids with geological materials, and the impact on nascent biomineral formation. Biomineralization is investigated in terms of mineralogy, morphology, bone chemistry, and pathological significance with a focus on the health impacts of "foreign" geological/environmental trace element incorporation. One of the contribution is devoted to particulate matter, the presence of metals and metalloids in the environment, and the possibility of using human hair as a biomarker between environmental/geological exposure and human bioincorporation. Other chapters focus on the last advances on the analytical methods and instrumentational approaches to investigating the chemistry of biological fluids and tissues.
Due to their unparalleled effectiveness and efficiency, polyfluorinated chemicals (PFC") "have become essential in numerous technical applications. However, many PFCs brought to market show limited biodegradability, and their environmental persistence combined with toxic and bioaccumulative potential have become a matter of concern in some instances. This volume highlights the synthesis of PFCs, focusing on substances with improved application and environmental properties, which are a challenge for synthetic chemists. Further, modern mass spectrometric techniques for the detection and identification of biotransformation products of PFCs are described. The sorption and leaching behavior of PFC in soil is also addressed in order to predict their fate in the environment. Several contributions discuss the monitoring of PFCs in European surface, ground and drinking waters, treatment options for PFC removal from drinking water, occurrence in food, and the human biomonitoring of PFCs.
These Proceedings contain both oral and poster contributions to the first interna tional conference" Field Screening Europe - Strategies and Techniques for On-Site Investigation and Monitoring of Contaminated Soil, Water and Air," held in Karls ruhe September 29 - October 1, 1997. Environmental monitoring and the assessment of chemical contaminations are be coming more and more important. The integrated study of environmental con tamination in the field is a rather recent approach. "Field screening" indicates such field analytical tools, (quick) methods and strategies for on-site or in-situ environmental analysis and assessment of contamination. The classical strategy for investigating contaminants consists of the following steps: site studies, sampling, sample transport to the laboratory, sample preparation, and analysis. This strategy is rather expensive and time consuming. Some investiga tions, including sample preparation, may last several days. In many cases, the results must be available immediately and are of importance for further decisions. Field screening is an alternative or complement to this strategy that attempts to be cheaper and faster and may achieve the same quality of results. The most important argument for field analytical methods is that the superior accuracy and high costs of laboratory methods are disproportional to the possibility of arti facts from sampling and errors originating from spatial variations of contaminants."
Carbon dioxide and other "greenhouse" gases are increasing in the atmosphere due to the burning of fossil fuels, the destruction of rain forests, etc, leading to predictions of a gradual global warming which will perturb the global biosphere. An important process which counters this trend toward potential climate change is the removal of carbon dioxide from the surface ocean by photosynthesis. This process packages carbon in phytoplankton which enter the food chain or sink into the deep sea. Their ultimate fate is a "rain" or organic debris out of the surface-mixed layer of the ocean. On a global scale, the mechanisms and overall rate of this process are relatively little known. The authors of the 25 papers in this volume present their state-of-the-art approaches to quantifying the mechanisms by which the "rain" of biogenic debris nourishes deep ocean life. Prominent deep sea ecologists, geochemists and modellers address relationships between data and models of carbon fluxes and food chains in the deep ocean. An attempt is made to estimate the fate of carbon in the deep sea on a global scale by summing up the utilization of organic matter among all the populations of the abyssal biosphere. Comparisons are made been these ecological approaches and estimates of geochemical fluxes based on sediment trapping, one-dimensional geochemical models and horizontal (physical) input from continental margins. Planning interdisciplinary enterprises between geochemists and ecologists, including new field programmes, are summarized in the final chapter. The summary includes a list of the important gaps in understanding which must addressed before the role of the deep-sea biota in global-scale processes can be put in perspective.
It is presently well recognized that total concentrations of trace elements in any environmental compartment supply insufficient information to understand important phenomena. The distinction and separate analysis of specific chemical species are essential for understanding cycles in the aquatic environment, involving identification and quantification of sources, transport pathways, distributions and sinks, or, in the area of interactions between trace elements and organisms to understand uptake, distribution, excretion mechanisms and effects. In the past, various ways have been developed to determine the nature and extent of complexation of trace elements in natural systems. Approaches have been followed along very different lines. These have not always been fully appreciated by specialists working in even related fields of complexation research. The first International Symposium on the Complexation of Trace metals in Natural Waters was held at the Netherlands Institute for Sea Research (NIOZ, Texel, the Netherlands from 2-6 May 1983. The scientific programme was planned by the chief organizers Drs. C.J.M. Kramer and J.C. Duinker (NIOZ) together with Prof. Dr. H.W. Nurnberg (Kernforschungsanlage, Julich, Federal Republic of Germany) and Dr. M. Branica (Rudjer Boskovic Institute, Zagreb, Yugoslavia).
A sound understanding of the global carbon cycle requires an appreciation of the various physico-chemical and biological processes that determine the production, distribution, deposition and diagenesis of organic matter in the natural environment. This book is a comprehensive interdisciplinary synthesis of this information, coupled with an organic facies approach based on data from both microscopy and bulk organic geochemistry. |
You may like...
Values, Identity, and Sustainable…
Ezra Chitando, Eunice Kamaara
Hardcover
R3,354
Discovery Miles 33 540
Nordic Perspectives on Nature-based…
Peter Fredman, Jan V. Haukeland
Hardcover
R3,933
Discovery Miles 39 330
Landscape Architecture - Processes and…
Luis Loures, Mustafa Ergen
Hardcover
R3,073
Discovery Miles 30 730
Handbook on the Business of…
Gerard George, Martine R. Haas, …
Hardcover
R8,082
Discovery Miles 80 820
|