Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geochemistry
For many years, the subject matter encompassed by the title of this book was largely limited to those who were interested in the two most economically important organic materials found buried in the Earth, namely, coal and petroleum. The point of view of any discussions which might occur, either in scientific meetings or in books that have been written, was, therefore, dominated largely by these interests. A great change has occurred in the last decade. This change had as its prime mover our growing knowledge of the molecular architecture of biological systems which, in turn, gave rise to a more legitimate asking of the question: "How did life come to be on the surface of the Earth?" A second motivation arose when the possibilities for the exploration of planets other than the Earth-the moon, Mars, and other parts of the solar system-became a reality. Thus the question of the possible existence of life elsewhere than on Earth conceivably could be answered.
Metrology and its applications e.g. in chemical or food analysis or in environmental monitoring are entering our daily life. This book provides a basic overview over the relevant metrological concepts like traceability, ISO uncertainties or cause-and-effect diagrams. The applications described in great detail range from progression-of-error type evaluation of the measurement uncertainty budget to complex applications like pH measurement or speciation calculations for aqueous solutions. The consequences of a measurement uncertainty concept for chemical data are outlined for geochemical modeling applied to transport in the subsurface and to nuclear waste disposal. Special sections deal with the deficits of existing thermodynamic data for these applications and with the current position of chemical metrology in respect to other quality assurance measures, e.g. ISO 900x, GLP, European and U.S.-American standards.
The second half of the past century witnessed a remarkable paradigm shift in approach to the understanding of igneous rocks. Global literature records a change from a classical petrographic approach to emphasis on mineral chemistry, trace element characteristics, tectonic setting, phase relations, and theoretical simulation of magma generation and evolution processes. This book contains contributions by international experts in different fields of igneous petrology and presents an overview of recent developments. This book is dedicated to the late Dr Mihir K. Bose, former professor of the Department of Geology, Presidency College, Calcutta, India, who actively participated in the development of this new global view of igneous petrology.
Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.
1000 DegreesC) and low pressures (< 2 kb) and typically results in the formation of "burnt" and fused rocks termed buchites, paralavas, clinkers and fulgarites. It is typically associated with shallow basaltic intrusions (contact aureoles, xenoliths,) combustion of carbonaceous matter, lightning strikes, and is also found in meteorites. During pyrometamorphism, the sequence of heating and cooling is greatly condensed favouring the preservation of a variety of stranded reaction microstructures that reflect disequilibrium reaction kinetics with metastable and mineral crystallisation. This second edition includes the latest developments in the study of pyrometamorphism derived from over 60 new references and accompanied with over 20 new illustrations.
Bill Cassidy has led meteorite recovery expeditions in the Antarctic for many years. His searches have resulted in the collection of thousands of meteorite specimens from the ice. This fascinating story is a first-hand account of his field experiences on the US Antarctic Search for Meteorites Project, which he carried out as part of an international team of scientists. Cassidy describes this hugely successful field program in Antarctica and its influence on our understanding of the moon, Mars and the asteroid belt. In this 2003 book, he describes the hardships and dangers of fieldwork in a hostile environment, as well as the appreciation he developed for the beauty of the place. In the final chapters he speculates on the results of the trips and the future research they might lead to.
This is the first comprehensive volume on cave sediments. It provides case-studies from around the world, gives guidance on appropriate applications of techniques, and their limitations, synthesizes methods that can be used to decipher complex deposits, and includes chemical deposits (speleothems) as well as clastic sediments. This book is for any geoscience researcher or student with interests in climate change, paleohydrology, karst geology, and sedimentology.
Do we actually understand geologic processes? New technology brings new inf- mation and perceptions, which sometimes overturn imaginations based on simple observation and estimation, in conjunction with common sense inference. In 1902- 1904,PierreCurieandErnestRutherford?rstformulatedtheideaofusingradioactive transformation of nuclides as a geologic chronometer. After a century of working with such tools, geology has advanced from a descriptive science to an analytic s- encethatformulatesconclusionsbasedonexactvalues.Thetechnologyofradiogenic isotope geology has created a branch of science that considers the Earth as a planet generated within a Solar system and studies the subsequent evolution of geologic processes that has resulted in the present formation of our planet's continents and oceans. The physicist Vitaly Ginsburg, Nobel Prize laureate, wrote recently: "If Kepler had been given information on orbital parameters of planets with modern precision, he would not have been able to formulate his laws". Indeed, after development of laws of celestial mechanics, methods of measurements became so advanced and such numerous secondary distortion effects were found that to describe an orbit of a cosmic body by a curve of the second order would appear impossible. But it does not mean that Kepler's laws are "cancelled"; they still occupy an honorable place in courses on celestial mechanics. A reasonable division into basic and secondary phenomena is accepted and the latter are entered as variations in the basic equations.
This book represents a rather complicated history of encounters, changes in research interest and some very interesting results. Initially it is the very fruitful interaction of Ecology and Geology. The point of view of ecologists is extremely refreshing for hard science people. Interaction and inter-relationships are the focus of Ecology whereas the traditional sciences, such as Geology, have tried to isolate the natural phenomena so that thye could be studied in a more rigorous manner. The traditional sciences were of course natural science - based since the world to be observed was at the door step of everyone, mountains, weather patterns, plants and so forth. Chemistry and Physics were de ned after Mathematics in order to establish more precise and viable principles of the behavior of the materials that formed the world around mankind. It became quite clear that the observation of the natural world was too complicated to consider all of the possible variables which could affect an observed process or situation. The systems were simpli ed and taken into the laboratory in order to better master the phenomena observed. Physics c- cerned itself with non-reacting materials, subjected to essentially mechanical forces.
This book is a companion to "Natural Gas Hydrate in Oceanic and Permafrost Environments" (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as 'hydrate'), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.
When did life first appear on Earth and what form did it take? The answer to this intriguing and fundamentally important question lies somewhere within the early Archean rock record. The young Earth was, however, a very different place to that we know today and numerous pitfalls await our interpretation of these most ancient rocks. The first half of this practical guide equips the reader with the background knowledge to successfully evaluate new potentially biological finds from the Archean rock record. Successive steps are covered, from locating promising samples in the field, through standard petrography and evaluation of antiquity and biogenicity criteria, to the latest state of the art geochemical techniques. The second half of the guide uniquely brings together all the materials that have been claimed to comprise the earliest fossil record into an easily accessible, fully illustrated format. This will be a handbook that every Archean geologist, palaeobiologist and astrobiologist will wish to have in their backpack or on their lab-bench.
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country's general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China's geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China's geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
Over the last few decades many studies have focused on the oxygen depletion of coastal and oceanic waters. An understanding of the processes involved is fundamental to assess the effects of global and climatic changes and to support an ecosystem approach to adaptive environmental management for coastal seas and ocean basins. This timely book presents the state-of-the-art of our knowledge of the nature and chemical structure of redox interfaces in a marine water column, oxygen depletion and connected processes. The structures of the redox layers, including the distribution of certain parameters and microbiological features, are described in detail. The volume also covers studies devoted to the interannual variability of some oxygen-depleted systems, modeling and new developments in observation techniques. In addition, it identifies remaining gaps in our knowledge of the cycling of chemical elements in changing redox conditions. The chapters are based on extensive observational data, collected by the authors during sea and shore expeditions, on archive data, and on a broad range of scientific literature.
It is presently well recognized that total concentrations of trace elements in any environmental compartment supply insufficient information to understand important phenomena. The distinction and separate analysis of specific chemical species are essential for understanding cycles in the aquatic environment, involving identification and quantification of sources, transport pathways, distributions and sinks, or, in the area of interactions between trace elements and organisms to understand uptake, distribution, excretion mechanisms and effects. In the past, various ways have been developed to determine the nature and extent of complexation of trace elements in natural systems. Approaches have been followed along very different lines. These have not always been fully appreciated by specialists working in even related fields of complexation research. The first International Symposium on the Complexation of Trace metals in Natural Waters was held at the Netherlands Institute for Sea Research (NIOZ, Texel, the Netherlands from 2-6 May 1983. The scientific programme was planned by the chief organizers Drs. C.J.M. Kramer and J.C. Duinker (NIOZ) together with Prof. Dr. H.W. Nurnberg (Kernforschungsanlage, Julich, Federal Republic of Germany) and Dr. M. Branica (Rudjer Boskovic Institute, Zagreb, Yugoslavia).
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
This abundantly illustrated book provides a concise overview of our understanding of the entire mantle, its evolution since early differentiation and the consequences of superplumes for earth surface processes. The book's balanced authorship has produced a state-of-the-science report on the emerging concept of superplumes. This presents a new concept to explain catastrophic events on Earth through geologic time.
This third edition of the book has been completely re-written, providing a wider scope and enhanced coverage. It covers the general principles of the natural occurrence, pollution sources, chemical analysis, soil chemical behaviour and soil-plant-animal relationships of heavy metals and metalloids, followed by a detailed coverage of 21 individual elements, including: antimony, arsenic, barium, cadmium, chromium, cobalt, copper, gold, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, tungsten, uranium, vanadium and zinc. The book is highly relevant for those involved in environmental science, soil science, geochemistry, agronomy, environmental health, and environmental engineering, including specialists responsible for the management and clean-up of contaminated land.
The Llobregat belongs to the most thoroughly studied rivers in Europe and is a paradigm of the confluence of human and natural disturbances in a single basin. Because of its location in a very densely populated region and its Mediterranean character, the Llobregat supports a mixture of irregular flow, water abstraction, excess nutrients, mining debris, and a wide array of pollutants. The aquatic organisms strive to survive in a dramatically changing river that passes through a succession of dams, weirs and channels. The long-term river monitoring as well as the research that has been carried out in the river for a long time have provided an extensive knowledge of these disturbances and their effects on the biological communities. This book highlights the available information, with emphasis on the hydrological, chemical and biological elements interspersed in the river. Experts in the field discuss the main nutrient patterns and pollutant occurrence and the responses of the biological quality elements as well as the river ecosystem to the overall natural and man-made influences.
The book will include contributions of the state of the art of quartz raw materials (deposits and properties) and their analytics. The chapters are presented by leading scientists in the quartz field. The presentations cover the main interrelations between genesis of quartz - formation of specific properties - analytics - industrial applications of SiO2 raw materials.
In the heart of Africa, a unique lake attracts the attention of scientists since the beginning of the 20th century. At the foot of the Virunga volcano chain, Lake Kivu harbors a vast amount of dissolved carbon dioxide and methane, making this lake the most dangerous lake on Earth. But the lake furnishes also many goods and services for surrounding populations and may soon become the most important energy supplier in the area. At the beginning of gas exploitation, the time has come for gathering the large amount of scientific information acquired during past and present research on Lake Kivu. The eleven chapters cover many aspects of the physics, geochemistry and biology of the lake, with a particular focus on the unique physical and geochemical features of the water column and on the ecological functioning of the surface waters. The impacts of the introduced fish species and the potential impacts of methane exploitation are also summarized. This multi-disciplinary book may also be used as an introduction to the limnology and biogeochemistry of large tropical lakes, as it covers various aspects of the physics, geochemistry, biology and ecology of the African Great Rift lakes.
This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms. This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.
This book covers the distribution, hydrochemistry and geophysics of the naturally occurring stable isotopes namely: hydrogen, oxygen and radioactive tritium, carbon and other cosmogenic and radiogenic isotopes of the uranium-thorium series, in the oceans and in atmosphere, the earth's surface and ground water. The use of environmental isotopes in the three main areas of natural waters is discussed: origin, dynamics and residence time in natural reservoirs. The origin of the hydrosphere is examined in the light of isotopic, new cosmochemical and recent theoretical results. The book will be of interest to scientists and researchers who use environmental isotopes in solving scientific and practical problems in hydrology, hydrogeology, oceanography, meteorology, hydrogeochemistry and cosmochemistry. Lecturers, students and postgraduates in these fields will also find it useful.
This book combines soil science, earth science, and environmental geochemistry, providing comprehensive background information for specialists interested in chemical-induced changes in the soil-subsurface system. Readers are introduced to the chemistry of contaminants that often disturb the natural soil-subsurface equilibrium as a result of human activity. While the soil-subsurface system has in many cases been affected by human impact, the effects of chemical contaminants on the actual matrix and properties have been largely neglected. The major focus of the book is on changes to the soil-subsurface matrix and properties caused by chemical pollution. By integrating results available in the literature, we observe that chemical pollutants may lead to the irreversible formation of a new soil-subsurface regime characterized by a matrix and properties different than those of the natural regime. In contrast to the geological time scales dictating natural changes to the matrix and properties of the soil-subsurface system, the time scale associated with chemical pollutant-induced changes is far shorter and extends over a "human lifetime scale." The numerous examples presented in the book confirm that chemical contamination should be considered as an additional factor in the formation of a contemporary soil-subsurface regime that is different than that of the pristine system.
|
You may like...
Proceedings of the Indian Geotechnical…
Satyajit Patel, C. H. Solanki, …
Hardcover
R9,145
Discovery Miles 91 450
Mesozoic Stratigraphy of India - A…
Santanu Banerjee, Subir Sarkar
Hardcover
R3,999
Discovery Miles 39 990
Energy Geotechnics - SEG-2018
Alessio Ferrari, Lyesse Laloui
Hardcover
R7,443
Discovery Miles 74 430
Applied Geochemistry with Case Studies…
Luis Felipe Mazadiego, Eduardo De Miguel Garcia, …
Hardcover
Cotton and Flax Fibre-Reinforced…
It-Meng Low, Thamer Alomayri, …
Hardcover
R4,580
Discovery Miles 45 800
|