![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Geophysics
This book bridges the gap between the many different disciplines used in applications of risk analysis to real world problems. Contributed by some of the world's leading experts, it creates a common information base and language for all risk analysis practitioners, risk managers, and decision makers. Valuable as both a reference for practitioners and a comprehensive textbook for students, Fundamentals of Risk Analysis and Risk Management is a unique contribution to the field. Its broad coverage ranges from basic theory of risk analysis to practical applications, risk perception, legal and political issues, and risk management.
Chemical substances, physical agents and built structures exhibit various types of hazard due to their inherent toxic, mutagenic, carcinogenic, reprotoxic and sensitizing character or damaging to the immune and hormone system. The first steps in managing an environment contaminated by chemical substances are characterization of hazards and quantification of their risks. Chemical models - using only analytical data - are still the most widely used applications for assessing potential adverse effects and the fate and behavior of chemicals in the environment. Chemical models rely on the assumption that the adverse effect is proportional to the concentration, which in most cases is incorrect. In this volume, other models such as biological and ecological or regression models are discussed in detail and compared. Environmental risk management has two subsections: risk assessment and risk reduction. Environmental risk, to a large extent, arises from the adverse effects of chemicals and contaminated land; that is why measuring and testing these effects plays a key role in risk management. "Environmental Toxicology" deals with direct measurement of adverse effects of pure chemicals or environmental samples. This book has therefore been created specifically for engineers and gives a general overview of environmental toxicology. It provides an overview of hundreds of standardized and nonstandardized, generic and site-specific, conventional and innovative, animal and alternative test methods, and demonstrates how to apply these results to the regulation and management of environmental risk. In addition to human, aquatic and terrestrial methods for measuring toxicity, new trends in environmental analytics and the integration and complementary use of chemical analyses and the testing of effects are described. Bioavailability and accessibility as key parameters are detailed and the interactive and dynamic characterization of contaminants in soil is introduced. Emphasis is placed on the evaluation and interpretation of environmental fate and adverse effect data as well as the simulation of environmental processes and effects in microcosms and mesocosms.
Managing Hazardous Air Pollutants presents a detailed examination of the state-of-the-art in the management of air pollutants ("air toxics"). This important new volume focuses on the latest research, regulatory perspectives, modeling, environmental and human risk assessments, new control strategies, monitoring programs, risk communication, and risk management. Key chapters in the book are devoted to these timely subjects:
Magnetism is important in environmental studies for several
reasons, the two most fundamental being that most substances
exhibit some form of magnetic behavior, and that iron is one of the
most common elements in the Earth's crust. Once sequestered in a
suitable material, magnetic particles constitute a natural archive
of conditions existing in former times. Magnetism provides a tracer
of paleo-climatic and paleo-environmental conditions and processes.
During the recent decades, social, political and academic endeavours have been made to improve environmental quality and reduce pollution. In particular, the ocean, sea and coastal areas show varying degrees of impact from the multiple human activities carried out in the terrestrial as well as in the aquatic environment. Ecology is a science which studies the relationship between organisms and the surrounding environment and in the modern era, the marine world is getting increasing attention. For centuries it has been the final reservoir of human garbage; later it became an oil farm with a concomitant increase of coastal population growth and unplanned growth of the fishing industry and the increasing use of sea routes for cargo transport and recreational uses (cruises). All this led to rising contamination with negative effects on biota and even human health. It is then imperative to know the current situation of the world's oceans: that is the main purpose of this book, to document at a glance the latest research in the field of ocean pollution.
China Satellite Navigation Conference (CSNC 2020) Proceedings presents selected research papers from CSNC 2020 held during 22nd-25th November in Chengdu, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 13 topics to match the corresponding sessions in CSNC2020, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Christian George, Barbara D Anna, Hartmut Herrmann, Christian
Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch,
Markus Ammann - Emerging Areas in Atmospheric Photochemistry. Lisa
Whalley, Daniel Stone, Dwayne Heard - New Insights into the
Tropospheric Oxidation of Isoprene: Combining Field Measurements,
Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M.
Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse
H. Kroll - Volatility and Aging of Atmospheric Organic Aerosol. P.
A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N.
Eltouny, J. Sun, C. Wilde - Bio-Organic Materials in the Atmosphere
and Snow: Measurement and Characterization. V. Faye McNeill, Neha
Sareen, Allison N. Schwier - Surface-Active Organics in Atmospheric
Aerosols.
A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as compressive sensing and sparse signal representations. The book brings a new perspective to a multidisciplinary research field that is becoming increasingly articulate and comprehensive. It fosters signal/image processing methodologies toward the goal of information extraction, either by humans or by machines, from remotely sensed images. The authors explain how relatively simple processing methods tailored to the specific features of the images may be winning in terms of reliable performance over more complex algorithms based on mathematical theories and models unconstrained from the physical behaviors of the instruments. Ultimately, the book covers the births and developments of three generations of RS image fusion. Established textbooks are mainly concerned with the earliest generation of methods. This book focuses on second generation methods you can use now and new trends that may become third generation methods. Only the lessons learned with second generation methods will be capable of fostering the excellence among the myriad of methods that are proposed almost every day by the scientific literature.
Processes of synchronization and interaction play a very special role in different physical problems concerning the dynamics of the Earth's interior; they are of particular importance in the study of seismic phenomena, and their complexity is strongly affected by the variety of geological structures and inhomogeneities of the medium that hamper the course of these processes and their intensity. The attempt to tackle these problems is a great challenge from experimental, observational and theoretical point of view. We present in this Monograph the theoretical and experimental results achieved in the frame of the European Project "Triggering and synchronization of seismic/ acoustic events by weak external forcing as a sign of approaching the critical point" (INTAS Ref. Nr 05-1000008-7889); in this Project, which was inspired by Professor Tamaz Chelidze, our aim was to give grounds for better understanding and interpretation of dynamical interactive processes of physical ?elds, both found in the laboratory experiments as well as in ?eld observations. One of the leading problems - related to synchronization and interaction of different physical ?elds in fracture processes concerns triggering and initiation of rupture and displa- ments within the Earth interior. From this point of view, the results from laboratory studies on synchronization and interaction and those found and involved in ?eld observations, helped to improve the theoretical background. Reversely, some of the presented new theoretical approaches have served to stimulate laboratory and ?eld studies.
SEEING THE UNSEEN. GEOPHYSICS AND LANDSCAPE ARCHAEOLOGY is a collection of papers presented at the advanced XV International Summer School in Archaeology 'Geophysics for Landscape Archaeology' (Grosseto, Italy, 10-18 July 2006). Bringing together the experience of some of the world's greatest experts in the field of archaeological prospection, the focus of this book is not so much on the analysis of single buried structures, but more on researching the entire landscape in all its multi-period complexity. The book is divided into two parts. The first part concentrates on the theoretical basis of the various methods, illustrated for the most part through case-studies and practical examples drawn from a variety of geographical and cultural contexts. The second part focuses on the work carried out in the field during the Summer School. Tutors and students took part in the intensive application of the principal techniques of geophysical prospecting (magnetometry, EM, ERT and ground-penetrating radar) to locate, retrieve, process and interpret data for a large Roman villa-complex near Grosseto. SEEING THE UNSEEN. GEOPHYSICS AND LANDSCAPE ARCHAEOLOGY provides a clear illustration of the remarkable potential of geophysical methods in the study of ancient landscapes, and will be usefull to Archaeologists, Geophysicists, Environmental scientists, and those involved in the management of cultural heritage.
The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications with significant impact in several branches of earth system sciences. Wavelets and Fractals in Earth System Sciences highlights the role of advanced data processing techniques in present-day research in various fields of earth system sciences. The book consists of ten chapters, providing a well-balanced blend of information about the role of wavelets, fractals, and multifractal analyses with the latest examples of their application in various research fields. By combining basics with advanced material, this book introduces concepts as needed and serves as an excellent introductory material and also as an advanced reference text for students and researchers.
This volume provides a snapshot of the current thinking and development perspectives on the installation and design of screw piles within the framework of Eurocode 7. The material included provides background on the various aspects of screw piles, with particular reference to stiff clays: 1. Exptensive description of a multi-million Euros research program on the loading behaviour of screw piles; 2. Geological and geotechnical characterization of Boom clay, and overview of screw pile testing over the last 30 years; 3. Results of the various load tests recently performed on 30 piles: static, dynamic, statnamic, and integrity and outcome of an international prediction event; 4. Tentative translation of the current body of knowledge in terms of potential application rules to be soon ascenrtained at the national level, as required by Eurocode 7. The remarkable aspects of the soil displacement piles covered in this book is an exceptionally low variability of geotechnical parameters, installation performance, and pile capacity calculations.
Originally published in 2000, The Arctic provides a comprehensive overview of the region's rapidly changing physical and human dimensions, and demonstrates the importance of communication between natural scientists, social scientists, and local stakeholders in response to the tremendous challenges and opportunities facing the Arctic. It is an essential resource for all Arctic researchers, particularly those developing multidisciplinary projects. It provides an overview of key areas of Arctic research by renowned specialists in the field, and each chapter forms a detailed, varied and accessible account of current knowledge. Each author introduces the subject to a specialist readership, while retaining intellectual integrity and relevance for specialists. Overall, the richness of the material presented in this volume reflects the ecological and cultural diversity of this vast and environmentally critical part of the globe.
Fully updated and expanded into two volumes, the new edition of Groundwater Contamination explains in a comprehensive way the sources for groundwater contamination, the regulations governing it, and the technologies for abating it. This volume discusses aquifer management and strategies for stormwater control and groundwater restoration. A number of case histories on site analysis and remediation based on DOE and state documents are included. Among the many new features of this edition are a full discussion of risk assessment, the preparation of groundwater protection plans, and references linking the text to over 2,300 water-related Web sites.
Geophysical and Astrophysical Convection collects important papers from an international group of the world's foremost researchers in geophysical and astrophysical convection to present a concise overview of recent thinking in the field. Topics include: Atmospheric convection, solar and stellar convection, unsteady non-penetrative thermal convection, astrophysical convection and dynamos, dynamics of cumulus entertainment, turbulent convection: helical buoyant convection, transport phenomena, potential vorticity, rotating convective turbulence, and the modeling and simulation various types of convection and turbulence.
Despite the esteemed nature of gold in society, evidence of adverse ecotoxicological effects and risk to human health in various mining and extraction techniques has generated increasing interest in the biological and environmental implications of gold. Biogeochemical, Health, and Ecotoxicological Perspectives on Gold and Gold Mining is the first comprehensive book to evaluate the effect of gold production and use on human health as well as the environmental impact of gold mining and extraction. Dr. Ronald Eisler, a well-known senior research biologist and expert in the chemical and biological effects of various compounds on wildlife, provides a thorough risk assessment of gold, including its geology and sources and physical, chemical, and metabolic properties. The author documents gold concentrations and field collections of abiotic materials and biota and presents research on the lethal and sublethal effects of gold on plants and animals. Supported by case histories, the book examines health risks in gold miners, human sensitivity to jewelry and dental implants, and medicinal uses. It uses examples in several countries to thoroughly explore the environmental effects of gold extraction, including tailings disposal, acid mine drainage, cyanide, arsenic, and mercury contamination, water management issues, and abandoned mines. Unlike traditional risk assessments, the author also takes into account social, political, economic, medicinal, and psychological variables for a more complete perspective on gold's impact on health and the environment. Biogeochemical, Health, and Ecotoxicological Perspectives on Gold and Gold Mining concludes with a discussion on mining legislation, safety, and procedures.
This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.
Lightning Physics and Lightning Protection presents a comprehensive and up-to-date review of lightning, including its hazards and protection techniques. The authors first discuss the effectiveness of conventional protective measures, supply technical advice and practical recommendations, and explore the prospects for the preventive control of a lightning leader, followed by a discussion of the initiation of a leader and return stroke and subsequent components. After including measurements useful for understanding lightning and its effects, the book describes the mechanism of lightning discharge processes. It then examines the effects of large aircraft, high-voltage lines, and other high-altitude constructions on lightning trajectory and leader attraction. The book concludes by studying the action of lightning's electrical and magnetic fields and the lightning current on industrial premises, power transmission lines, underground communications, aircraft and their electrical circuits, and the induction of a dangerous overvoltage. A clear, straightforward, and systematic presentation of complicated material, Lightning Physics and Lightning Protection provides deep insight into the physics of lightning, simple analytical estimates, and a detailed illustration of effects by computer simulation, making this resource essential for those who investigate lightning phenomena and who have to solve practical protection problems.
Knowledge of the mechanical properties of rocks at high pressure and temperature is fundamental not only for material science but also for earth science, such as for solving the mechanism of earthquakes and tectonic processes. For example, physical bases of the earthquake prediction based on the rock mechanics have been proposed, and extensive seismological, geophysical and geochemical observations have been conducted to find precursory phenomena before large earthquakes. However, we cannot help telling for the present that we do not have sufficient knowledge of an effective and reliable method for earthquake prediction. The book is mainly concerned with comprehensive source of information on the mechanical properties and behavior of rocks under high pressure that scans current state-of-the-art knowledge and shows contribution in establishing an experimental basis for the understanding of the mechanism of rock deformation in the earth's interior. The book can be used as textbook for graduate students by university teachers to prepare courses and seminars, and for active scientists and engineers who want to become familiar with a fascinating new field.
There is hardly a field of science or engineering that does not
have some interest in light scattering by small particles. For
example, this subject is important to climatology because the
energy budget for the Earth's atmosphere is strongly affected by
scattering of solar radiation by cloud and aerosol particles, and
the whole discipline of remote sensing relies largely on analyzing
the parameters of radiation scattered by aerosols, clouds, and
precipitation. The scattering of light by spherical particles can
be easily computed using the conventional Mie theory. However, most
small solid particles encountered in natural and laboratory
conditions have nonspherical shapes. Examples are soot and mineral
aerosols, cirrus cloud particles, snow and frost crystals, ocean
hydrosols, interplanetary and cometary dust grains, and
microorganisms. It is now well known that scattering properties of
nonspherical particles can differ dramatically from those of
"equivalent" (e.g., equal-volume or equal-surface-area) spheres.
Therefore, the ability to accurately compute or measure light
scattering by nonspherical particles in order to clearly understand
the effects of particle nonsphericity on light scattering is very
important. * The first systematic and comprehensive treatment of
electromagnetic scattering by nonspherical particles and its
applications
This open access volume contains the proceedings of the 5th Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2019) held in St. Petersburg, Russia, October 1 – 4, 2019. The symposium was hosted by the State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC and was attended by 75 participants from 15 different countries. 32 oral and 20 poster contributions were presented in four different topical sessions: Terrestrial, shipboard and airborne gravimetry, Absolute gravimetry, Relative gravimetry, gravity networks and applications of gravimetry and Cold atom and superconducting gravimeters, gravitational experiments.
and for those interested in toxic effects of chemicals on humans, Human Variability in Response to Chemical Exposures: Measures, Modeling, and Risk Assessment recognizes and addresses the increasing awareness that individual biological differences be reflected when assessing human health risks associated with exposure to chemicals. Eight original manuscripts, commissioned by the ILSI Risk Science Institute, address the evidence for variability in human response to chemicals associated with reproductive and developmental effects, effects on the nervous system and lungs, and cancer. Their reports convey both the current state of scientific understanding of response variability and the genetic basis for such observations. This book recognizes that understanding of variability in response is critical in accounting for interindividual variability in susceptibility and, hence, risk, if the regulatory community and others are expected to characterize human health risks associated with exposure to chemicals. Models for incorporating measures of response variability in the risk assessment process are critically reviewed and illustrated with published data. This authoritative work indicates that, in the case of certain chemicals and in the context of certain specific toxic effects, we have considerable ability to predictively and quantitatively characterize human variability, but, in the majority of cases, our ability to do so is limited. If we improve both quantity and quality of information available on response variability and increase our understanding of target tissue dosimetry, we should be better able to account for variability in human susceptibility to the toxic effects of chemicals.
These three works cover the entire field of formation evaluation,
from basic concepts and theories, through standard methods used by
the petroleum industry, on to new and exciting applications in
environmental science and engineering, hydrogeology, and other
fields. Designed to be used individually or as a set, these volumes
represent the first comprehensive assessment of all exploration
methodologies. No other books offer the breadth of information and
range of applications available in this set.
This volume presents the results on contemporary geodynamic model, crustal stress field, active faults, folds and volcanoes. It discusses the tectonophysical environments of earthquake generation and the methodology of earthquake prediction. |
You may like...
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
Magnetospheric Imaging - Understanding…
Yaireska M Collado-Vega, Dennis Gallagher, …
Paperback
R3,045
Discovery Miles 30 450
|