![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Image processing
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user's context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. This book is the last of a series of three annual volumes devoted to the latest results of the FP7 European Project ROMEO. The present volume provides state-of-the-art information on 3D multi-view video, spatial audio networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading.
"Advances in computer technology and developments such as the Internet provide a constant momentum to design new techniques and algorithms to support computer graphics. Modelling, animation and rendering remain principal topics in the filed of computer graphics and continue to attract researchers around the world." This volume contains the papers presented at Computer Graphics International 2002, in July, at the University of Bradford, UK. These papers represent original research in computer graphics from around the world and cover areas such as:- Real-time computer animation - Image based rendering - Non photo-realistic rendering - Virtual reality - Avatars - Geometric and solid modelling - Computational geometry - Physically based modelling - Graphics hardware architecture - Data visualisation - Data compression The focus is on the commercial application and industrial use of computer graphics and digital media systems.
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
Biometrics-based authentication and identification are emerging as the most reliable method to authenticate and identify individuals. Biometrics requires that the person to be identified be physically present at the point-of-identification and relies on something which you are or you do' to provide better security, increased efficiency, and improved accuracy. Automated biometrics deals with physiological or behavioral characteristics such as fingerprints, signature, palmprint, iris, hand, voice and face that can be used to authenticate a person's identity or establish an identity from a database. With rapid progress in electronic and Internet commerce, there is also a growing need to authenticate the identity of a person for secure transaction processing. Designing an automated biometrics system to handle large population identification, accuracy and reliability of authentication are challenging tasks. Currently, there are over ten different biometrics systems that are either widely used or under development. Some automated biometrics, such as fingerprint identification and speaker verification, have received considerable attention over the past 25 years, and some issues like face recognition and iris-based authentication have been studied extensively resulting in successful development of biometrics systems in commercial applications. However, very few books are exclusively devoted to such issues of automated biometrics. Automated Biometrics: Technologies and Systems systematically introduces the technologies and systems, and explores how to design the corresponding systems with in-depth discussion. The issues addressed in this book are highly relevant to many fundamental concerns of both researchers and practitioners of automated biometrics in computer and system security.
Advancements in digital sensor technology, digital image analysis techniques, as well as computer software and hardware have brought together the fields of computer vision and photogrammetry, which are now converging towards sharing, to a great extent, objectives and algorithms. The potential for mutual benefits by the close collaboration and interaction of these two disciplines is great, as photogrammetric know-how can be aided by the most recent image analysis developments in computer vision, while modern quantitative photogrammetric approaches can support computer vision activities. Devising methodologies for automating the extraction of man-made objects (e.g. buildings, roads) from digital aerial or satellite imagery is an application where this cooperation and mutual support is already reaping benefits. The valuable spatial information collected using these interdisciplinary techniques is of improved qualitative and quantitative accuracy. This book offers a comprehensive selection of high-quality and in-depth contributions from world-wide leading research institutions, treating theoretical as well as implementational issues, and representing the state-of-the-art on this subject among the photogrammetric and computer vision communities.
This graduate-level text provides a language for understanding, unifying, and implementing a wide variety of algorithms for digital signal processing - in particular, to provide rules and procedures that can simplify or even automate the task of writing code for the newest parallel and vector machines. It thus bridges the gap between digital signal processing algorithms and their implementation on a variety of computing platforms. The mathematical concept of tensor product is a recurring theme throughout the book, since these formulations highlight the data flow, which is especially important on supercomputers. Because of their importance in many applications, much of the discussion centres on algorithms related to the finite Fourier transform and to multiplicative FFT algorithms.
129 6.2 Representation of hints. 131 6.3 Monotonicity hints .. . 134 6.4 Theory ......... . 139 6.4.1 Capacity results 140 6.4.2 Decision boundaries 144 6.5 Conclusion 145 6.6 References....... ... 146 7 Analysis and Synthesis Tools for Robust SPRness 147 C. Mosquera, J.R. Hernandez, F. Perez-Gonzalez 7.1 Introduction.............. 147 7.2 SPR Analysis of Uncertain Systems. 153 7.2.1 The Poly topic Case . 155 7.2.2 The ZP-Ball Case ...... . 157 7.2.3 The Roots Space Case ... . 159 7.3 Synthesis of LTI Filters for Robust SPR Problems 161 7.3.1 Algebraic Design for Two Plants ..... . 161 7.3.2 Algebraic Design for Three or More Plants 164 7.3.3 Approximate Design Methods. 165 7.4 Experimental results 167 7.5 Conclusions 168 7.6 References ..... . 169 8 Boundary Methods for Distribution Analysis 173 J.L. Sancho et aZ. 8.1 Introduction ............. . 173 8.1.1 Building a Classifier System . 175 8.2 Motivation ............. . 176 8.3 Boundary Methods as Feature-Set Evaluation 177 8.3.1 Results ................ . 179 8.3.2 Feature Set Evaluation using Boundary Methods: S- mary. . . . . . . . . . . . . . . . . . . .. . . 182 . . .
Despite their novelty, wavelets have a tremendous impact on a number of modern scientific disciplines, particularly on signal and image analysis. Because of their powerful underlying mathematical theory, they offer exciting opportunities for the design of new multi-resolution processing algorithms and effective pattern recognition systems. This book provides a much-needed overview of current trends in the practical application of wavelet theory. It combines cutting edge research in the rapidly developing wavelet theory with ideas from practical signal and image analysis fields. Subjects dealt with include balanced discussions on wavelet theory and its specific application in diverse fields, ranging from data compression to seismic equipment. In addition, the book offers insights into recent advances in emerging topics such as double density DWT, multiscale Bayesian estimation, symmetry and locality in image representation, and image fusion. Audience: This volume will be of interest to graduate students and researchers whose work involves acoustics, speech, signal and image processing, approximations and expansions, Fourier analysis, and medical imaging.
This book discusses research, methods, and recent developments in the interdisciplinary field that spans research in visualization, eye tracking, human-computer interaction, and psychology. It presents extended versions of papers from the First Workshop on Eye Tracking and Visualization (ETVIS), which was organized as a workshop of the IEEE VIS Conference 2015. Topics include visualization and visual analytics of eye-tracking data, metrics and cognitive models, eye-tracking experiments in the context of visualization interfaces, and eye tracking in 3D and immersive environments. The extended ETVIS papers are complemented by a chapter offering an overview of visualization approaches for analyzing eye-tracking data and a chapter that discusses electrooculography (EOG) as an alternative of acquiring information about eye movements. Covering scientific visualization, information visualization, and visual analytics, this book is a valuable resource for eye-tracking researchers within the visualization community.
In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density.
Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existing PR and CV technologies can naturally evolve using this new paradigm. The chapters of this book show different successful case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.
Mobile robots are playing an increasingly important role in our world. Remotely operated vehicles are in everyday use for hazardous tasks such as charting and cleaning up hazardous waste spills, construction work of tunnels and high rise buildings, and underwater inspection of oil drilling platforms in the ocean. A whole host of further applications, however, beckons robots capable of autonomous operation without or with very little intervention of human operators. Such robots of the future will explore distant planets, map the ocean floor, study the flow of pollutants and carbon dioxide through our atmosphere and oceans, work in underground mines, and perform other jobs we cannot even imagine; perhaps even drive our cars and walk our dogs. The biggest technical obstacles to building mobile robots are vision and navigation-enabling a robot to see the world around it, to plan and follow a safe path through its environment, and to execute its tasks. At the Carnegie Mellon Robotics Institute, we are studying those problems both in isolation and by building complete systems. Since 1980, we have developed a series of small indoor mobile robots, some experimental, and others for practical applicationr Our outdoor autonomous mobile robot research started in 1984, navigating through the campus sidewalk network using a small outdoor vehicle called the Terregator. In 1985, with the advent of DARPA's Autonomous Land Vehicle Project, we constructed a computer controlled van with onboard sensors and researchers. In the fall of 1987, we began the development of a six-legged Planetary Rover.
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
Acquiring spatial data for geoinformation systems is still mainly done by human operators who analyze images using classical photogrammetric equipment or digitize maps, possibly assisted by some low level image processing. Automation of these tasks is difficult due to the complexity of the object, the topography, and the deficiency of current pattern recognition and image analysis tools for achieving a reliable transition from the data to the high level description of topographic objects. It appears that progress in automation only can be achieved by incorporating domain-specific semantic models into the analysis procedures. This volume collects papers which were presented at the Workshop "SMATI '97." The workshop focused on "Semantic Modeling for the Acquisition of Topographic Information from Images and Maps." This volume offers a comprehensive selection of high-quality and in-depth contributions by experts of the field coming from leading research institutes, treating both theoretical and implementation issues and integrating aspects of photogrammetry, cartography, computer vision, and image understanding.
"3D Surface Reconstruction: Multi-Scale Hierarchical Approaches "presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. "3D Surface Reconstruction: Multi-Scale Hierarchical Approaches" is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
This book presents an introduction to new and important research in the images processing and analysis area. It is hoped that this book will be useful for scientists and students involved in many aspects of image analysis. The book does not attempt to cover all of the aspects of Computer Vision, but the chapters do present some state of the art examples.
The fully automated estimation of the 6 degrees of freedom camera motion and the imaged 3D scenario using as the only input the pictures taken by the camera has been a long term aim in the computer vision community. The associated line of research has been known as Structure from Motion (SfM). An intense research effort during the latest decades has produced spectacular advances; the topic has reached a consistent state of maturity and most of its aspects are well known nowadays. 3D vision has immediate applications in many and diverse fields like robotics, videogames and augmented reality; and technological transfer is starting to be a reality. This book describes one of the first systems for sparse point-based 3D reconstruction and egomotion estimation from an image sequence; able to run in real-time at video frame rate and assuming quite weak prior knowledge about camera calibration, motion or scene. Its chapters unify the current perspectives of the robotics and computer vision communities on the 3D vision topic: As usual in robotics sensing, the explicit estimation and propagation of the uncertainty hold a central role in the sequential video processing and is shown to boost the efficiency and performance of the 3D estimation. On the other hand, some of the most relevant topics discussed in SfM by the computer vision scientists are addressed under this probabilistic filtering scheme; namely projective models, spurious rejection, model selection and self-calibration.
The simplest, easiest, and quickest ways to learn over 250 Lightroom tips, tricks, and techniques! Lightroom has become the photographer s best tool because it just has so much power and so much depth, but because it has so much power and depth, sometimes the things you need are well kinda hidden or not really obvious. There will be a lot of times when you need to get something done in Lightroom, but you have no idea where Adobe hid that feature, or what the secret handshake is to do that thing you need now so you can get back to working on your images. That s why this book was created: to get you to the technique, the shortcut, or exactly the right setting, right now. How Do I Do That In Lightroom? (3rd Edition) is a fully updated version of the bestselling first and second editions, and it covers all of Lightroom's newest and best tools, such as its powerful masking features. Here's how the book works: When you need to know how to do a particular thing, you turn to the chapter where it would be found (Organizing, Importing, Developing, Printing, etc.), find the thing you need to do (it s easy each page covers just one single topic), and Scott tells you exactly how to do it just like he was sitting there beside you, using the same casual style as if he were telling a friend. That way, you get back to editing your images fast.
Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e., the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images."
Realistic and immersive simulations of land, sea, and sky are requisite to the military use of visual simulation for mission planning. Until recently, the simulation of natural environments has been limited first of all by the pixel resolution of visual displays. Visual simulation of those natural environments has also been limited by the scarcity of detailed and accurate physical descriptions of them. Our aim has been to change all that. To this end, many of us have labored in adjacent fields of psych- ogy, engineering, human factors, and computer science. Our efforts in these areas were occasioned by a single question: how distantly can fast-jet pilots discern the aspect angle of an opposing aircraft, in visual simulation? This question needs some ela- ration: it concerns fast jets, because those simulations involve the representation of high speeds over wide swaths of landscape. It concerns pilots, since they begin their careers with above-average acuity of vision, as a population. And it concerns aspect angle, which is as much as to say that the three-dimensional orientation of an opposing aircraft relative to one's own, as revealed by motion and solid form. v vi Preface The single question is by no means simple. It demands a criterion for eye-limiting resolution in simulation. That notion is a central one to our study, though much abused in general discussion. The question at hand, as it was posed in the 1990s, has been accompanied by others.
More mathematicians have been taking part in the development of digital image processing as a science and the contributions are reflected in the increasingly important role modeling has played solving complex problems. This book is mostly concerned with energy-based models. Through concrete image analysis problems, the author develops consistent modeling, a know-how generally hidden in the proposed solutions. The book is divided into three main parts. The first two parts describe the materials necessary to the models expressed in the third part. These materials include splines (variational approach, regression spline, spline in high dimension), and random fields (Markovian field, parametric estimation, stochastic and deterministic optimization, continuous Gaussian field). Most of these models come from industrial projects in which the author was involved in robot vision and radiography: tracking 3D lines, radiographic image processing, 3D reconstruction and tomography, matching, deformation learning. Numerous graphical illustrations accompany the text showing the performance of the proposed models. This book will be useful to researchers and graduate students in applied mathematics, computer vision, and physics.
Traditionally, three-dimensional image analysis (a.k.a. computer vision) and three-dimensional image synthesis (a.k.a. computer graphics) were separate fields. Rarely were experts working in one area interested in and aware of the advances in the other. Over the last decade this has changed dramatically, reflecting the growing maturity of each of these areas. The vision and graphics communities are today engaged in a mutually beneficial exchange, learning from each other and coming up with new ideas and techniques that build on the state of the art in both fields. This book is the result of a fruitful collaboration between scientists at the University of NA1/4rnberg, Germany, who, coming from diverse fields, are working together propelled by the vision of a unified area of three-dimensional image analysis and synthesis. Principles of 3D Image Analysis and Synthesis starts out at the image acquisition end of a hypothetical processing chain, proceeds with analysis, recognition and interpretation of images, towards the representation of scenes by 3D geometry, then back to images via rendering and visualization techniques. Coverage includes discussion of range cameras, multiview image processing, the structure-from-motion problem, object recognition, knowledge-based image analysis, active vision, geometric modeling with meshes and splines, and reverse engineering. Also included is cutting-edge coverage of texturing techniques, global illumination, image-based rendering, volume visualization, flow visualization techniques, and acoustical imaging including object localization from audio and video. This state-of-the-art volume is a concise and readable reference for scientists, engineers, graduate students and educators working in image processing, vision, computer graphics, or visualization.
Rapid development of computer hardware has enabled usage of automatic object recognition in an increasing number of applications, ranging from industrial image processing to medical applications, as well as tasks triggered by the widespread use of the internet. Each area of application has its specific requirements, and consequently these cannot all be tackled appropriately by a single, general-purpose algorithm. This easy-to-read text/reference provides a comprehensive introduction to the field of object recognition (OR). The book presents an overview of the diverse applications for OR and highlights important algorithm classes, presenting representative example algorithms for each class. The presentation of each algorithm describes the basic algorithm flow in detail, complete with graphical illustrations. Pseudocode implementations are also included for many of the methods, and definitions are supplied for terms which may be unfamiliar to the novice reader. Supporting a clear and intuitive tutorial style, the usage of mathematics is kept to a minimum. Topics and features: presents example algorithms covering global approaches, transformation-search-based methods, geometrical model driven methods, 3D object recognition schemes, flexible contour fitting algorithms, and descriptor-based methods; explores each method in its entirety, rather than focusing on individual steps in isolation, with a detailed description of the flow of each algorithm, including graphical illustrations; explains the important concepts at length in a simple-to-understand style, with a minimum usage of mathematics; discusses a broad spectrum of applications, including some examples from commercial products; contains appendices discussing topics related to OR and widely used in the algorithms, (but not at the core of the methods described in the chapters). Practitioners of industrial image processing will find this simple introduction and overview to OR a valuable reference, as will graduate students in computer vision courses. Marco Treiber is a software developer at Siemens Electronics Assembly Systems, Munich, Germany, where he is Technical Lead in Image Processing for the Vision System of SiPlace placement machines, used in SMT assembly.
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks. This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions.
Whole Body Interaction is The integrated capture and processing of human signals from physical, physiological, cognitive and emotional sources to generate feedback to those sources for interaction in a digital environment (England 2009). "Whole Body Interaction "looks at the challenges of Whole Body Interaction from the perspectives of design, engineering and research methods. How do we take physical motion, cognition, physiology, emotion and social context to push boundaries of Human Computer Interaction to involve the complete set of human capabilities? Through the use of various applications the authors attempt to answer this question and set a research agenda for future work. Aimed at students and researchers who are looking for new project ideas or to extend their existing work with new dimensions of interaction. " |
You may like...
|