![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
Main concepts of quasi-stationary distributions (QSDs) for killed processes are the focus of the present volume. For diffusions, the killing is at the boundary and for dynamical systems there is a trap. The authors present the QSDs as the ones that allow describing the long-term behavior conditioned to not being killed. Studies in this research area started with Kolmogorov and Yaglom and in the last few decades have received a great deal of attention. The authors provide the exponential distribution property of the killing time for QSDs, present the more general result on their existence and study the process of trajectories that survive forever. For birth-and-death chains and diffusions, the existence of a single or a continuum of QSDs is described. They study the convergence to the extremal QSD and give the classification of the survival process. In this monograph, the authors discuss Gibbs QSDs for symbolic systems and absolutely continuous QSDs for repellers. The findings described are relevant to researchers in the fields of Markov chains, diffusions, potential theory, dynamical systems, and in areas where extinction is a central concept. The theory is illustrated with numerous examples. The volume uniquely presents the distribution behavior of individuals who survive in a decaying population for a very long time. It also provides the background for applications in mathematical ecology, statistical physics, computer sciences, and economics.
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
This book is about morphogenesis as the genesis of forms. It is not restricted to plants growing from seed or animals developing from an embryo (although these do supply the most abundant examples) but also addresses kindred processes, from inorganic to social to biomorphic technology. It is about our morphogenetic universe: unplanned, unfair and frustratingly complicated but benevolent in allowing us to emerge, survive, and inquire into its laws.
The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.
This book deals with an effect in celestial mechanics that has become quite important in exoplanet research. The Lidov-Kozai effect reveals itself in coherent periodic variations (which can be very large) of the inclination and eccentricity of an orbiting body in the presence of an inclined perturber. The effect is known to be important in the motion of many asteroids and planetary satellites. What is more, now it attracts more and more interest in the astronomical and astrophysical community due to its relevance for many exoplanetary systems. Recent years witnessed major advancements in its theory. It would be no exaggeration to say that nowadays the Lidov-Kozai effect becomes one of the most studied astrophysical effects. This book covers the multitude of the Lidov-Kozai effect's modern applications and its theory developments. It will be useful for researchers and students working in astrophysics, celestial mechanics, stellar dynamics, theoretical mechanics, space missions design, depending on the interests of the reader. The book is self-contained. It provides the full detailed coverage of the effect's theory and applications.
This book treats essentials from neurophysiology (Hodgkin-Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction arrays, waveguide arrays, photonic crystals and optical fibers. Nonlinear excitations are inherent to Bose-Einstein Condensates, constituting an excellent benchmark for testing their properties and providing a pathway for future discoveries in fundamental physics.
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.
This book presents the most significant contributions to the DINAME 2017 conference, covering a range of dynamic problems to provide insights into recent trends and advances in a broad variety of fields seldom found in other proceedings volumes. DINAME has been held every two years since 1986 and is internationally recognized as a central forum for discussing scientific achievements related to dynamic problems in mechanics. Unlike many other conferences, it employs a single-session format for the oral presentations of all papers, which limits the number of accepted papers to roughly 100 and makes the evaluation process extremely rigorous. The papers gathered here will be of interest to all researchers, graduate students and engineering professionals working in the fields of mechanical and mechatronics engineering and related areas around the globe.
Chaos and nonlinear dynamics initially developed as a new emergent
field with its foundation in physics and applied mathematics. The
highly generic, interdisciplinary quality of the insights gained in
the last few decades has spawned myriad applications in almost all
branches of science and technology-and even well beyond. Wherever
the quantitative modeling and analysis of complex, nonlinear
phenomena are required, chaos theory and its methods can play a key
role.
Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
"Progress in Partial Differential Equations" is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or aremembers of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The readers will find this an excellent resource of both introductory and advanced material. The key topics are: Linear hyperbolic equations and systems (scattering,
symmetrisers)
The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It consists of three parts:- an introduction to the fundamental principles of neural networks;- several methods for nonlinear identification using neural networks;- various techniques for nonlinear control using neural networks.A number of simulated and industrial examples are used throughout the monograph to demonstrate the operation of nonlinear identification and control techniques using neural networks. It should be emphasised that the methods and systems of nonlinear control have not progressed as rapidly as those for linear control. Comparatively speaking, at the present time, they are still in the development stage. We believe that the fundamental theory, various design methods and techniques, and several applications of nonlinear identification and control using neural networks that are presented in this monograph will enable the reader to analyse and synthesise nonlinear control systems quantitatively.
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations, lasers, andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and system
This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.
This book discusses mathematical models for various applications in economics, with a focus on non-linear dynamics. Based on the author's over 50 years of active work in the field, the book has been inspired by models from the period between 1920 and 1950. Following a brief introduction to economics for mathematicians and other modelers, it assembles a repository of useful specific functions for global dynamic modeling. Furthermore, twelve "research stubs" - outlined research agendas that have not yet been fully worked on - are suggested for further study and could even be expanded to entire research projects. The book is a valuable resource, particularly for young scientists who are skilled in mathematical and computational techniques and are looking for applications in economics.
This book is an extended version of lectures given by the ?rst author in 1995-1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics, physics, chemistry, and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cial
This book deals with the application of modern control theory to some important underactuated mechanical systems. It presents modelling and control of the following systems:- the inverted pendulum- a convey-crane system- the pendubot system- the Furuta pendulum- the inertia wheel pendulum- the planar flexible-joint robot- the planar manipulator with two prismatic and one revolute joints- the ball & beam system- the hovercraft model- the planar vertical and take-off landing (PVTOL) aircraft- the helicopter model on a platform- the helicopter modelIn every case the model is obtained in detail using either the Euler-Lagrange formulation or the Newton's second law. We develop control algorithms for every particular system using techniques such as passivity, energy-based Lyapunov functions, forwarding, backstepping or feedback linearization techniques. This book will be of great value for PhD students and researchers in the areas of non-linear control systems, mechanical systems, robotics and control of helicopters. It will help the reader gain experience in the modelling of mechanical systems and familiarize with new control methods for non-linear systems.
Scilab and its Scicos block diagram graphical editor, with a special emphasis on modeling and simulation tools. The first part is a detailed Scilab tutorial, and the second is dedicated to modeling and simulation of dynamical systems in Scicos. The concepts are illustrated through numerous examples, and all code used in the book is available to the reader.
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
This book on advanced optoisolation circuits for nonlinearity applications in engineering addresses two separate engineering and scientific areas, and presents advanced analysis methods for optoisolation circuits that cover a broad range of engineering applications. The book analyzes optoisolation circuits as linear and nonlinear dynamical systems and their limit cycles, bifurcation, and limit cycle stability by using Floquet theory. Further, it discusses a broad range of bifurcations related to optoisolation systems: cusp-catastrophe, Bautin bifurcation, Andronov-Hopf bifurcation, Bogdanov-Takens (BT) bifurcation, fold Hopf bifurcation, Hopf-Hopf bifurcation, Torus bifurcation (Neimark-Sacker bifurcation), and Saddle-loop or Homoclinic bifurcation. Floquet theory helps as to analyze advance optoisolation systems. Floquet theory is the study of the stability of linear periodic systems in continuous time. Another way to describe Floquet theory, it is the study of linear systems of differential equations with periodic coefficients. The optoisolation system displays a rich variety of dynamical behaviors including simple oscillations, quasi-periodicity, bi-stability between periodic states, complex periodic oscillations (including the mixed-mode type), and chaos. The route to chaos in this optoisolation system involves a torus attractor which becomes destabilized and breaks up into a fractal object, a strange attractor. The book is unique in its emphasis on practical and innovative engineering applications. These include optocouplers in a variety of topological structures, passive components, conservative elements, dissipative elements, active devices, etc. In each chapter, the concept is developed from the basic assumptions up to the final engineering outcomes. The scientific background is explained at basic and advanced levels and closely integrated with mathematical theory. The book is primarily intended for newcomers to linear and nonlinear dynamics and advanced optoisolation circuits, as well as electrical and electronic engineers, students and researchers in physics who read the first book "Optoisolation Circuits Nonlinearity Applications in Engineering". It is ideally suited for engineers who have had no formal instruction in nonlinear dynamics, but who now desire to bridge the gap between innovative optoisolation circuits and advanced mathematical analysis methods.
This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world's leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences. |
![]() ![]() You may like...
Fractal Geometry and Stochastics VI
Uta Freiberg, Ben Hambly, …
Hardcover
R4,591
Discovery Miles 45 910
From Cells to Societies - Models of…
Alexander S. Mikhailov, Vera Calenbuhr
Hardcover
R3,053
Discovery Miles 30 530
|