![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
This volume presents selected contributions by top researchers in the field of operations research, originating from the XVI Congress of APDIO. It provides interesting findings and applications of operations research methods and techniques in a wide variety of problems. The contributions address complex real-world problems, including inventory management with lateral transshipments, sectors and routes in solid-waste collection and production planning for perishable food products. It also discusses the latest techniques, making the volume a valuable tool for researchers, students and practitioners who wish to learn about current trends. Of particular interest are the applications of nonlinear and mixed-integer programming, data envelopment analysis, clustering techniques, hybrid heuristics, supply chain management and lot sizing, as well as job scheduling problems. This biennial conference, organized by APDIO, the Portuguese Association of Operational Research, held in Braganca, Portugal, in June 2013, presented a perfect opportunity to discuss the latest development in this field and to narrow the gap between academic researchers and practitioners.
This book is devoted to the study of boundary value problems for nonlinear ordinary differential equations and focuses on questions related to the study of nonlinear interpolation. In 1967, Andrzej Lasota and Zdzislaw Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families, has stimulated 50 years of development in the study of solutions of boundary value problems as nonlinear interpolation problems.The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation.
This monograph offers a coherent, self-contained account of the theory of Sinai-Ruelle-Bowen measures and decay of correlations for nonuniformly hyperbolic dynamical systems. A central topic in the statistical theory of dynamical systems, the book in particular provides a detailed exposition of the theory developed by L.-S. Young for systems admitting induced maps with certain analytic and geometric properties. After a brief introduction and preliminary results, Chapters 3, 4, 6 and 7 provide essentially the same pattern of results in increasingly interesting and complicated settings. Each chapter builds on the previous one, apart from Chapter 5 which presents a general abstract framework to bridge the more classical expanding and hyperbolic systems explored in Chapters 3 and 4 with the nonuniformly expanding and partially hyperbolic systems described in Chapters 6 and 7. Throughout the book, the theory is illustrated with applications. A clear and detailed account of topics of current research interest, this monograph will be of interest to researchers in dynamical systems and ergodic theory. In particular, beginning researchers and graduate students will appreciate the accessible, self-contained presentation.
This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Ces notes sont consacrees aux inegalites et aux theoremes limites classiques pour les suites de variables aleatoires absolument regulieres ou fortement melangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'etude des processus faiblement dependants aux statisticiens ou aux probabilistes travaillant sur ces processus.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems - the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions - published in the works of author in recent years.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.
This volume provides a broad introduction to nonlinear integral dynamical models and new classes of evolutionary integral equations. It may be used as an advanced textbook by postgraduate students to study integral dynamical models and their applications in machine learning, electrical and electronic engineering, operations research and image analysis.
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
This book is about morphogenesis as the genesis of forms. It is not restricted to plants growing from seed or animals developing from an embryo (although these do supply the most abundant examples) but also addresses kindred processes, from inorganic to social to biomorphic technology. It is about our morphogenetic universe: unplanned, unfair and frustratingly complicated but benevolent in allowing us to emerge, survive, and inquire into its laws.
The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.
This invaluable volume ends the quest to uncover the secret recipes for predicting the long-term evolution of a ring of identical elementary cells where the binary state of each cell during each generation of an attractor (i.e. after the transients had disappeared) is determined uniquely by the state of its left and right neighbors in the previous generation, as decreed by one of 256 truth tables. As befitting the contents aimed at school children, it was found pedagogically appealing to code each truth table by coloring each of the 8 vertices of a cubical graph in red (for binary state 1), or blue (for binary state 0), forming a toy universe of 256 Boolean cubes, each bearing a different vertex color combination.The corresponding collection of 256 distinct Boolean cubes are then segegrated logically into 6 distinct groups where members from each group share certain common dynamics which allow the long-term evolution of the color configuration of each bit string, of arbitrary length, to be predicted painlessly, via a toy-like gaming procedure, without involving any calculation. In particular, the evolution of any bit string bearing any initial color configuration which resides in any one of the possibly many distinct attractors, can be systematically predicted, by school children who are yet to learn arithmetic, via a simple recipe, for any Boolean cube belonging to group 1, 2, 3, or 4. The simple recipe for predicting the time-asymptotic behaviors of Boolean cubes belonging to groups 1, 2, and 3 has been covered in Vols. I, II, ..., V.This final volume continues the recipe for each of the 108, out of 256, local rules, dubbed the Bernoulli rules, belonging to group 4. Here, for almost half of the toy universe, surprisingly simple recipes involving only the following three pieces of information are derived in Vol. VI; namely, a positive integer , a positive, or negative, integer , and a sign parameter > 0, or < 0. In particular, given any color configuration belonging to an attractor of any one of the 108 Boolean cubes from group 4, any child can predict the color configuration after generations, without any computation, by merely shifting each cell bits to the left (resp. right) if > 0 (resp. < 0), and then change the color of each cell if < 0.As in the five prior volumes, Vol. VI also contains simple recipes which are, in fact, general and original results from the abstract theory of 1-dimensional cellular automata. Indeed, both children and experts from cellular automata will find this volume to be as deep, refreshing, and entertaining, as the previous volumes.
Science Sifting is designed primarily as a textbook for students interested in research and as a general reference book for existing career scientists. The aim of this book is to help budding scientists broaden their capacities to access and use information from diverse sources to the benefit of their research careers.The book describes why the capacity to access and integrate both linear and nonlinear information has been an important historic feature of pivotal scientific breakthroughs. Yet, it is a process that our students are rarely, if ever, taught in universities. This book goes beyond simply describing the features of great scientific breakthroughs. It discusses the basis for accessing and using nonlinear information in the linear research context. It also provides a series of tools and exercises that can be used to enhance access to nonlinear information for application to research and other endeavors.Topics covered include focal points in scientific breakthroughs, the use of concepts maps in research, use of different vantage points, information as patterns, fractals for the scientist, memory storage and access points, and synchronicities. Young researchers need useful tools to help with a more holistic approach to their research careers. This book provides the useful tools to support flexibility and creativity across a long-term research career.Roald Hoffmann - Winner of the 1981 Nobel Prize in Chemistry - has contributed the to Science Sifting. More information on Professor Hoffmann can be found at .
Science Sifting is designed primarily as a textbook for students interested in research and as a general reference book for existing career scientists. The aim of this book is to help budding scientists broaden their capacities to access and use information from diverse sources to the benefit of their research careers.The book describes why the capacity to access and integrate both linear and nonlinear information has been an important historic feature of pivotal scientific breakthroughs. Yet, it is a process that our students are rarely, if ever, taught in universities. This book goes beyond simply describing the features of great scientific breakthroughs. It discusses the basis for accessing and using nonlinear information in the linear research context. It also provides a series of tools and exercises that can be used to enhance access to nonlinear information for application to research and other endeavors.Topics covered include focal points in scientific breakthroughs, the use of concepts maps in research, use of different vantage points, information as patterns, fractals for the scientist, memory storage and access points, and synchronicities. Young researchers need useful tools to help with a more holistic approach to their research careers. This book provides the useful tools to support flexibility and creativity across a long-term research career.Roald Hoffmann - Winner of the 1981 Nobel Prize in Chemistry - has contributed the to Science Sifting. More information on Professor Hoffmann can be found at .
Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science. The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction arrays, waveguide arrays, photonic crystals and optical fibers. Nonlinear excitations are inherent to Bose-Einstein Condensates, constituting an excellent benchmark for testing their properties and providing a pathway for future discoveries in fundamental physics.
This invaluable book is a unique collection of tributes to outstanding discoveries pioneered by Leon Chua in nonlinear circuits, cellular neural networks, and chaos. It is comprised of three parts. The first - cellular nonlinear networks, nonlinear circuits and cellular automata - deals with Chua's Lagrangian circuits, cellular wave computers, bio-inspired robotics and neuro-morphic architectures, toroidal chaos, synaptic cellular automata, history of Chua's circuits, cardiac arrhythmias, local activity principle, symmetry breaking and complexity, bifurcation trees, and Chua's views on nonlinear dynamics of cellular automata. Dynamical systems and chaos is the scope of the second part of the book, where we find genius accounts on theory and application of Julia set, stability of dynamical networks, chaotic neural networks and neocortical dynamics, dynamics of piecewise linear systems, chaotic mathematical circuitry, synchronization of oscillators, models of catastrophic events, control of chaotic systems, symbolic dynamics, and solitons. First hand accounts on the discovery of memristors in HP Labs, historical excursions into 'ancient memristors', analytical analysis of memristors, and hardware memristor emulators are presented in the third and final part of the book.The book is quintessence of ideas on future and emergent hardware, analytic theories of complex dynamical systems and interdisciplinary physics. It is a true Renaissance volume where bright ideas of electronics, mathematics and physics enlighten facets of modern science.The unique DVD covers the artistic aspects of chaos, such as several stunningly melodious musical compositions using chaotic atttractors, a virtual gallery of hundreds of colorful attractors, and even a cartoon-like play on the genesis of Chua's circuit that was based on a widely acclaimed performance in Rome and other venues in Italy. In short, it is a veritable kaleiscope of never-before-published historical, pedagogical, and futuristic technical visions on three timely topics of intense interest for both lay readers and experts alike.
This book is the third volume of lecture notes from summer schools held in the small village of Peyresq (France). These lectures cover nonlinear physics in a broad sense. They were given over the period 2004 to 2008. The summer schools were organized by the Institut Non Lineaire de Nice (Nice, France), the Laboratoire de Physique Statistique (ENS Paris, France) and the Institut de Recherche de Physique Hors Equilibre (Marseilles, France). The goal of the book is to provide a high-quality overview on the state of the art in nonlinear sciences, and to promote the transfer of knowledge between the various domains in physics dealing with nonlinear phenomena.
The main goal is to offer readers a panorama of recent progress in nonlinear physics, complexity and transport with attractive chapters readable by a broad audience. It allows readers to gain an insight into these active fields of research and notably promotes the interdisciplinary studies from mathematics to experimental physics. To reach this aim, the book collects a selection of contributions to the CCT11 conference (Marseille, 23 - 27 May 2011).
Slime mould Physarum polycephalum is a monstrous single cell well known for its task-solving abilities - solves computational geometry and logical problems, navigates robots and generates music.The slime mould could also build motorways, highways and expressways. It is used to analyse transport networks of Africa, Australia, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, The Netherlands, UK and USA. The largest cities are represented by oat flakes and the slime mould is inoculated in a capital. When all oat flakes are covered by the slime mould, the structure of the protoplasmic networks formed are analyzed. In the laboratory experiments and theoretical analyses, intriguing country-specific properties of the motorway networks are uncovered and compared with the man-made and slime mould networks. They are studied as proximity graphs, leading to hierarchies of complexity and bio-rationality of the motorways.The book will inspire novel and original thoughts, paradigms and approaches for re-evaluation of historical findings on the emergence of ancient roads and will help to design future transcontinental pathways. The book is self-contained and does not require any special training or knowledge. This lavishly illustrated text will be appreciated by readers from all walks of life.
High technology industries are in desperate need for adequate tools to assess the validity of simulations produced by ever faster computers for perennial unstable problems. In order to meet these industrial expectations, applied mathematicians are facing a formidable challenge summarized by these words - nonlinearity and coupling. This book is unique as it proposes truly original solutions: (1) Using hypercomputation in quadratic algebras, as opposed to the traditional use of linear vector spaces in the 20th century; (2) complementing the classical linear logic by the complex logic which expresses the creative potential of the complex plane.The book illustrates how qualitative computing has been the driving force behind the evolution of mathematics since Pythagoras presented the first incompleteness result about the irrationality of 2. The celebrated results of Goedel and Turing are but modern versions of the same idea: the classical logic of Aristotle is too limited to capture the dynamics of nonlinear computation. Mathematics provides us with the missing tool, the organic logic, which is aptly tailored to model the dynamics of nonlinearity. This logic will be the core of the "Mathematics for Life" to be developed during this century. |
You may like...
Imperfect Bifurcation in Structures and…
Kiyohiro Ikeda, Kazuo Murota
Hardcover
R2,200
Discovery Miles 22 000
Recent Trends In Chaotic, Nonlinear And…
Jan Awrejcewicz, Rajasekar Shanmuganathan, …
Hardcover
R4,226
Discovery Miles 42 260
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,840
Discovery Miles 28 400
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,049
Discovery Miles 40 490
|