![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Within our knowledge, the series of the International Conference on Cognitive Neurodynamics (ICCN) is the only conference series dedicating to cognitive neurodynamics. This volume is the proceedings of the 2nd International Conference on Cognitive Neurodynamics held in 2009, which reviews the progress in this field since the 1st ICCN -2007. The topics include: Neural coding and realistic neural network dynamics, Neural population dynamics, Firing Oscillations and Patterns in Neuronal Networks, Brain imaging, EEG, MEG, Sensory and Motor Dynamics, Global cognitive function, Multi-scalar Neurodynamics - from Physiology to Systems Theory, Neural computing, Emerging Technologies for Brain Computer Interfaces, Neural dynamics of brain disorders.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
This volume comprises the communications presented at the ETC 11, the EUROMECH European Turbulence conference held in 2007 in Porto. The scientific committee has chosen the contributions out of the following topics: Acoustics of turbulent flows; Atmospheric turbulence; Control of turbulent flows; Geophysical and astrophysical turbulence; Instability and transition; Intermittency and scaling; Large eddy simulation and related techniques; MHD turbulence; Reacting and compressible turbulence; Transport and mixing; Turbulence in multiphase and non-Newtonian flows; Vortex dynamics and structure formation; Wall bounded flows.
The notes of this book originate from three series of lectures given at the Centre de Recerca Matematica (CRM) in Barcelona. The first one is dedicated to the study of periodic solutions of autonomous differential systems in Rn via the Averaging Theory and was delivered by Jaume Llibre. The second one, given by Richard Moeckel, focusses on methods for studying Central Configurations. The last one, by Carles Simo, describes the main mechanisms leading to a fairly global description of the dynamics in conservative systems. The book is directed towards graduate students and researchers interested in dynamical systems, in particular in the conservative case, and aims at facilitating the understanding of dynamics of specific models. The results presented and the tools introduced in this book include a large range of applications.
Due to inherent limitations in human sensing organs, most data collected for various purposes contain uncertainties. Even at the rare occasions when accurate data are available, the truthful predictions derived on the data tend to create chaotic consequences. So, to effectively process and make sense out of available data, we need methods to deal with uncertainty inherently existing inside the data. The intent of this monograph is to explore the fundamental theory, methods, and techniques of practical application of grey systems theory, initiated by Professor Deng Julong in 1982. This volume presents most of the recent advances of the theory accomplished by scholars from around the world. From studying this book, the reader will not only acquire an overall knowledge of this new theory but also be able to follow the most current research activities. All examples presented are based on practical applications of the theory when urgent real-life problems had to be addressed. Last but not the least, this book concludes with three appendices. The first one compares grey systems theory and interval analysis while revealing the fact that interval analysis is a part of grey mathematics. The second appendix presents an array of different approaches of studying uncertainties. And, the last appendix shows how uncertainties appear using general systems approach.
Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.
At?rstsight,thisbookisaboutfacerecognitioninthebrain.Itsmorelasting value, however,lies in the paradigmatic way in which this particular problem is treated. From the basic ideas that are worked out here in concrete detail, it is a naturaland simple next step to at leastimagine, if not realizein model form, much more generalstructures and processes,thus helping to bridge the still tremendous chasm between mind and brain. It is the purpose of this foreword to point out these generic traits. For centuries, thinking about the brain has been dominated by the most complexmechanisticdevicesofthetime,clockwork,communicatinghydraulic tubesor,today,thecomputer.Thecomputer,takenasincarnationoftheU- versal Turing Machine, can implement any conceivable process, so that also a functional brain can surely be simulated on it, an idea that, beginning in the ?fties of the last century, has been seducing scientists to create "art- cial intelligence" in the computer. As a result we now have an information technology that displays many functional capabilities formerly regarded as the exclusive domain of the mind. As fascinating as this is, doting on "int- ligent machines" is systematically diverting our attention awayfrom the true problems of understanding the working of the brain.
This book presents recent developments and results found by participants of the Third International Conference on the Dynamics of Information Systems, which took place at the University of Florida, Gainesville FL, USA on February 16-18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and universities to exchange knowledge and results in a broad range of topics relevant to the theory and practice of the dynamics of information systems. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more.
Nonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species). This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painleve test. If the equation under study passes the Painleve test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions. The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schroedinger equation (continuous and discrete), the Korteweg-de Vries equation, the Henon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model. Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever the quantitative modeling and analysis of complex, nonlinear phenomena are required, chaos theory and its methods can play a key role. This second volume concentrates on reviewing further relevant, contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such as the spread of epidemics; electronic circuits; chaos control in mechanical devices; secure communication; and digital watermarking. Featuring contributions from active and leading research groups, this collection is ideal both as a reference work and as a 'recipe book' full of tried and tested, successful engineering applications.
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, evolutionary biology and technology, fluid turbulence, microbial biogeochemistry, plasma physics, and radiative transport, using a wide variety of analytical and experimental techniques. Beyond The Second Law will appeal to students and researchers wishing to gain an understanding of entropy production and its central place in the science of non-equilibrium systems - both in detail and in terms of the bigger picture.
This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.
This thesis describes the first demonstration of a cooperative optical non-linearity based on Rydberg excitation. Whereas in conventional non-linear optics the non-linearity arises directly from the interaction between light and matter, in a cooperative process it is mediated by dipole-dipole interactions between light-induced excitations. For excitation to high Rydberg states where the electron is only weakly bound, the dipole-dipole interactions are extremely large and long range, enabling an enormous enhancement of the non-linear effect. Consequently, cooperative non-linear optics using Rydberg excitations opens a new era for quantum optics enabling large single photon non-linearity to be accessible in free space for the first time. The thesis describes the theoretical underpinnings of the non- linear effect, the pioneering experimental results and implications for experiments in the single photon regime.
"Topics in Nonlinear Dynamics, Volume 3, Proceedings of the 30th
IMAC, A Conference and Exposition on Structural Dynamics, 2012,
"the third volume of six from the Conference, brings together 26
contributions to this important area of research and engineering.
The collection presents early findings and case studies on
fundamental and applied aspects of Structural Dynamics, including
papers on:
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities ... In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology-and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. This third volume concentrates on reviewing further relevant contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such fluctuation relations and chaotic dynamics in physics, fractals and their applications in epileptic seizures, as well as chaos synchronization. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a 'recipe book' full of tried and tested, successful engineering applications.
This book presents and extend different known methods to solve
different types of strong nonlinearities encountered by engineering
systems. A better knowledge of the classical methods presented in
the first part lead to a better choice of the so-called base
functions . These are absolutely necessary to obtain the auxiliary
functions involved in the optimal approaches which are presented in
the second part.
The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. Theyalso turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The bookbegins with an introduction through inverse limits on 0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete thebook. Although it is not a book on dynamics, the influence of dynamics can be seen throughout; for instance, it includes studies of inverse limits with maps from families of maps that are of interest to dynamicists such as the logistic and the tent families. This book will serve as a useful reference to graduate students and researchers in continuum theory and dynamical systems. Researchers working in applied areas who are discovering inverse limits in their work will also benefit from this book. "
This volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering. |
You may like...
Systemics of Incompleteness and…
Gianfranco Minati, Mario R. Abram, …
Hardcover
R2,705
Discovery Miles 27 050
Quantum Signatures of Chaos
Fritz Haake, Sven Gnutzmann, …
Hardcover
Biological Systems: Nonlinear Dynamics…
Jorge Carballido-Landeira, Bruno Escribano
Hardcover
R1,408
Discovery Miles 14 080
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Imperfect Bifurcation in Structures and…
Kiyohiro Ikeda, Kazuo Murota
Hardcover
R2,200
Discovery Miles 22 000
IUTAM Symposium on Exploiting Nonlinear…
Ivana Kovacic, Stefano Lenci
Hardcover
R5,180
Discovery Miles 51 800
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,319
Discovery Miles 43 190
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,840
Discovery Miles 28 400
|