![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on "simple" situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland.
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
Probability, Random Processes, and Ergodic Properties is for mathematically inclined information/communication theorists and people working in signal processing. It will also interest those working with random or stochastic processes, including mathematicians, statisticians, and economists. Highlights: Complete tour of book and guidelines for use given in Introduction, so readers can see at a glance the topics of interest. Structures mathematics for an engineering audience, with emphasis on engineering applications. New in the Second Edition: Much of the material has been rearranged and revised for pedagogical reasons. The original first chapter has been split in order to allow a more thorough treatment of basic probability before tackling random processes and dynamical systems. The final chapter has been broken into two pieces to provide separate emphasis on process metrics and the ergodic decomposition of affine functionals. Many classic inequalities are now incorporated into the text, along with proofs; and many citations have been added.
Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems. Although the methods and concepts are briefly introduced, a prior knowledge of center-manifold reductions and normal-form calculations will help the reader to appreciate the presentation. Bifurcations without parameters occur along manifolds of equilibria, at points where normal hyperbolicity of the manifold is violated. The general theory, illustrated by many applications, aims at a geometric understanding of the local dynamics near the bifurcation points.
Main concepts of quasi-stationary distributions (QSDs) for killed processes are the focus of the present volume. For diffusions, the killing is at the boundary and for dynamical systems there is a trap. The authors present the QSDs as the ones that allow describing the long-term behavior conditioned to not being killed. Studies in this research area started with Kolmogorov and Yaglom and in the last few decades have received a great deal of attention. The authors provide the exponential distribution property of the killing time for QSDs, present the more general result on their existence and study the process of trajectories that survive forever. For birth-and-death chains and diffusions, the existence of a single or a continuum of QSDs is described. They study the convergence to the extremal QSD and give the classification of the survival process. In this monograph, the authors discuss Gibbs QSDs for symbolic systems and absolutely continuous QSDs for repellers. The findings described are relevant to researchers in the fields of Markov chains, diffusions, potential theory, dynamical systems, and in areas where extinction is a central concept. The theory is illustrated with numerous examples. The volume uniquely presents the distribution behavior of individuals who survive in a decaying population for a very long time. It also provides the background for applications in mathematical ecology, statistical physics, computer sciences, and economics.
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincare, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Due to inherent limitations in human sensing organs, most data collected for various purposes contain uncertainties. Even at the rare occasions when accurate data are available, the truthful predictions derived on the data tend to create chaotic consequences. So, to effectively process and make sense out of available data, we need methods to deal with uncertainty inherently existing inside the data. The intent of this monograph is to explore the fundamental theory, methods, and techniques of practical application of grey systems theory, initiated by Professor Deng Julong in 1982. This volume presents most of the recent advances of the theory accomplished by scholars from around the world. From studying this book, the reader will not only acquire an overall knowledge of this new theory but also be able to follow the most current research activities. All examples presented are based on practical applications of the theory when urgent real-life problems had to be addressed. Last but not the least, this book concludes with three appendices. The first one compares grey systems theory and interval analysis while revealing the fact that interval analysis is a part of grey mathematics. The second appendix presents an array of different approaches of studying uncertainties. And, the last appendix shows how uncertainties appear using general systems approach.
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Within our knowledge, the series of the International Conference on Cognitive Neurodynamics (ICCN) is the only conference series dedicating to cognitive neurodynamics. This volume is the proceedings of the 2nd International Conference on Cognitive Neurodynamics held in 2009, which reviews the progress in this field since the 1st ICCN -2007. The topics include: Neural coding and realistic neural network dynamics, Neural population dynamics, Firing Oscillations and Patterns in Neuronal Networks, Brain imaging, EEG, MEG, Sensory and Motor Dynamics, Global cognitive function, Multi-scalar Neurodynamics - from Physiology to Systems Theory, Neural computing, Emerging Technologies for Brain Computer Interfaces, Neural dynamics of brain disorders.
Nonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species). This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painleve test. If the equation under study passes the Painleve test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions. The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schroedinger equation (continuous and discrete), the Korteweg-de Vries equation, the Henon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model. Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research.
This volume comprises the communications presented at the ETC 11, the EUROMECH European Turbulence conference held in 2007 in Porto. The scientific committee has chosen the contributions out of the following topics: Acoustics of turbulent flows; Atmospheric turbulence; Control of turbulent flows; Geophysical and astrophysical turbulence; Instability and transition; Intermittency and scaling; Large eddy simulation and related techniques; MHD turbulence; Reacting and compressible turbulence; Transport and mixing; Turbulence in multiphase and non-Newtonian flows; Vortex dynamics and structure formation; Wall bounded flows.
This book presents recent developments and results found by participants of the Third International Conference on the Dynamics of Information Systems, which took place at the University of Florida, Gainesville FL, USA on February 16-18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and universities to exchange knowledge and results in a broad range of topics relevant to the theory and practice of the dynamics of information systems. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: research in evolutionary theory, optimization of information workflow, military applications, climate networks, collision work, and much more.
The theory of nonlinear oscillations and stability of motion is a fundamental part of the study of numerous real world phenomena. These phenomena, particularly auto-oscillations of the first and second kind, capture, para metric, subharmonic and ultraharmonic resonance, asymptotic behavior and orbits' stability, constitute the core of problems treated in "Nonlinear Mechanics", and their study is connected with the names of H. Poincare, A. M. Lyapunov, N. M. Krylov and N. N. Bogolyubov. Professor Demetrios Magiros, a widely known scientist in the theories of oscillations and nonlinear differential equations, has devoted his numerous works to this significant part of modern physical science. His scientific results can be classified in the following way: I) creation of methods of analysis of subharmonic resonances under the nonlinear effect, 2) determination and analysis of the main modes of nonlinear oscillations on the basis of infinite determinants, 3) analysis of problems of celestial mechanics, 4) classification of stability of solutions of dynamic systems concepts, 5) mathematical analogs of physical and social systems. He has developed new methods and solutions for a great number of difficult problems of nonlinear mechanics making a significant contri bution to the theory and applications of the field. Urgency, depth of perception of the considered phenomena, and practi cal directness are characteristics of his work.
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, evolutionary biology and technology, fluid turbulence, microbial biogeochemistry, plasma physics, and radiative transport, using a wide variety of analytical and experimental techniques. Beyond The Second Law will appeal to students and researchers wishing to gain an understanding of entropy production and its central place in the science of non-equilibrium systems - both in detail and in terms of the bigger picture.
This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.
Stochastic resonance has been observed in many forms of systems, and has been hotly debated by scientists for over 30 years. Applications incorporating aspects of stochastic resonance may yet prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. Ideal for researchers in fields ranging from computational neuroscience through to electronic engineering, this book addresses in detail various theoretical aspects of stochastic quantization, in the context of the suprathreshold stochastic resonance effect. Initial chapters review stochastic resonance and outline some of the controversies and debates that have surrounded it. The book then discusses suprathreshold stochastic resonance, and its extension to more general models of stochastic signal quantization. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers, before culminating with a chapter in the application of suprathreshold stochastic resonance to the design of cochlear implants.
"Topics in Nonlinear Dynamics, Volume 3, Proceedings of the 30th
IMAC, A Conference and Exposition on Structural Dynamics, 2012,
"the third volume of six from the Conference, brings together 26
contributions to this important area of research and engineering.
The collection presents early findings and case studies on
fundamental and applied aspects of Structural Dynamics, including
papers on:
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
The aim of this work is to bridge the gap between the well-known Newtonian mechanics and the studies on chaos, ordinarily reserved to experts. Several topics are treated: Lagrangian, Hamiltonian and Jacobi formalisms, studies of integrable and quasi-integrable systems. The chapter devoted to chaos also enables a simple presentation of the KAM theorem. All the important notions are recalled in summaries of the lectures. They are illustrated by many original problems, stemming from real-life situations, the solutions of which are worked out in great detail for the benefit of the reader. This book will be of interest to undergraduate students as well as others whose work involves mechanics, physics and engineering in general.
Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities ... In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior." |
You may like...
Biological Systems: Nonlinear Dynamics…
Jorge Carballido-Landeira, Bruno Escribano
Hardcover
R1,408
Discovery Miles 14 080
Recent Advances in Nonlinear Dynamics…
Kyandoghere Kyamakya, Wolfgang Mathis, …
Hardcover
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Modeling, Dynamics, Optimization and…
Alberto A. Pinto, David Zilberman
Hardcover
R3,862
Discovery Miles 38 620
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,840
Discovery Miles 28 400
|