![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
The book is devoted to the problems of modeling physical systems and fields using the tools and capabilities of the 'Mathematica' software package. In the process of teaching classical courses in mechanics and mathematical physics, one often has to overcome significant difficulties associated with the cumbersomeness of the mathematical apparatus, which more than once distracts from the essence of the problems under consideration. The use of the 'Mathematica' package, which has a rich set of analytical and graphic tools, makes the presentation of classic issues related to modeling and interpretation of physical processes much more transparent. This package enables the visualization of both analytical solutions of nonlinear differential equations and solutions obtained in the form of infinite series or special functions.The textbook consists of two parts that can be studied independently of each other. The first part deals with the issues of nonlinear mechanics and the theory of oscillations. The second part covers linear problems of classical mathematical physics and nonlinear evolution models describing, inter alia, transport phenomena and propagation of waves. The book contains the codes of programs written in the 'Mathematica' package environment. Supplementary materials of programs illustrating and often complementing the presented material are available on the publisher's website.
Nonlinear Analysis of Structures presents a complete evaluation of the nonlinear static and dynamic behavior of beams, rods, plates, trusses, frames, mechanisms, stiffened structures, sandwich plates, and shells. These elements are important components in a wide variety of structures and vehicles such as spacecraft and missiles, underwater vessels and structures, and modern housing. Today's engineers and designers must understand these elements and their behavior when they are subjected to various types of loads. Coverage includes the various types of nonlinearities, stress-strain relations and the development of nonlinear governing equations derived from nonlinear elastic theory. This complete guide includes both mathematical treatment and real-world applications, with a wealth of problems and examples to support the text. Special topics include a useful and informative chapter on nonlinear analysis of composite structures, and another on recent developments in symbolic computation.
This book presents a functional approach to the construction, use and approximation of Green's functions and their associated ordered exponentials. After a brief historical introduction, the author discusses new solutions to problems involving particle production in crossed laser fields and non-constant electric fields. Applications to problems in potential theory and quantum field theory are covered, along with new approximations for the treatment of color fluctuations in high-energy QCD scattering.
This book discusses human perception and performance within the framework of the theory of self-organizing systems. To that end, it presents a variety of phenomena and experimental findings in the research field, and provides an introduction to the theory of self-organization, with a focus on amplitude equations, order parameter and Lotka-Volterra equations. The book demonstrates that relating the experimental findings to the mathematical models provides an explicit account for the causal nature of human perception and performance. In particular, the notion of determinism versus free will is discussed in this context. The book is divided into four main parts, the first of which discusses the relationship between the concept of determinism and the fundamental laws of physics. The second part provides an introduction to using the self-organization approach from physics to understand human perception and performance, a strategy used throughout the remainder of the book to connect experimental findings and mathematical models. In turn, the third part of the book focuses on investigating performance guided by perception: climbing stairs and grasping tools are presented in detail. Perceptually relevant bifurcation parameters in the mathematical models are also identified, e.g. in the context of walk-to-run gait transitions. Chains of perceptions and actions together with their underlying mechanisms are then presented, and a number of experimental phenomena - such as selective attention, priming, child play, bistable perception, retrieval-induced forgetting, functional fixedness and memory effects exhibiting hysteresis with positive or negative sign - are discussed. Human judgment making, internal experiences such as dreaming and thinking, and Freud's concept of consciousness are also addressed. The fourth and last part of the book explores several specific topics such as learning, social interactions between two people, life trajectories, and applications in clinical psychology. In particular, episodes of mania and depression under bipolar disorder, perception under schizophrenia, and obsessive-compulsive rituals are discussed. This book is intended for researchers and graduate students in psychology, physics, applied mathematics, kinesiology, and the sport sciences who want to learn about the foundations of the field. Written for a mixed audience, the experiments and concepts are presented using non-technical language throughout. In addition, each chapter includes more advanced sections for modelers in the fields of physics and applied mathematics.
The main goal is to offer readers a panorama of recent progress in nonlinear physics, complexity and transport with attractive chapters readable by a broad audience. It allows readers to gain an insight into these active fields of research and notably promotes the interdisciplinary studies from mathematics to experimental physics. To reach this aim, the book collects a selection of contributions to the CCT11 conference (Marseille, 23 - 27 May 2011).
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale systems. Taking inspiration from systems sciences, chapters 9 to 11 highlight multi-level modeling potentialities in formal concept analysis, existential graphs and evolvable designs of experiments. Case studies refer to separation flow-sheets, pharmaceutical pipeline, drug design and development, reliability management systems, security and failure analysis. Perspectives and integrative points of view are discussed in chapter 12. Autonomous and viable systems, multi-agents, organic and autonomic computing, multi-level informational systems, are revealed as promising domains for future applications. Written for: engineers, researchers, entrepreneurs and students in chemical, pharmaceutical, environmental and systems sciences engineering, and for applied mathematicians.
The second edition of this monograph describes the set-theoretic approach for the control and analysis of dynamic systems, both from a theoretical and practical standpoint. This approach is linked to fundamental control problems, such as Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. Completely self-contained, this book provides a solid foundation of mathematical techniques and applications, extensive references to the relevant literature, and numerous avenues for further theoretical study. All the material from the first edition has been updated to reflect the most recent developments in the field, and a new chapter on switching systems has been added. Each chapter contains examples, case studies, and exercises to allow for a better understanding of theoretical concepts by practical application. The mathematical language is kept to the minimum level necessary for the adequate formulation and statement of the main concepts, yet allowing for a detailed exposition of the numerical algorithms for the solution of the proposed problems. Set-Theoretic Methods in Control will appeal to both researchers and practitioners in control engineering and applied mathematics. It is also well-suited as a textbook for graduate students in these areas. Praise for the First Edition "This is an excellent book, full of new ideas and collecting a lot of diverse material related to set-theoretic methods. It can be recommended to a wide control community audience." - B. T. Polyak, Mathematical Reviews "This book is an outstanding monograph of a recent research trend in control. It reflects the vast experience of the authors as well as their noticeable contributions to the development of this field...[It] is highly recommended to PhD students and researchers working in control engineering or applied mathematics. The material can also be used for graduate courses in these areas." - Octavian Pastravanu, Zentralblatt MATH
This book is the third volume of lecture notes from summer schools held in the small village of Peyresq (France). These lectures cover nonlinear physics in a broad sense. They were given over the period 2004 to 2008. The summer schools were organized by the Institut Non Lineaire de Nice (Nice, France), the Laboratoire de Physique Statistique (ENS Paris, France) and the Institut de Recherche de Physique Hors Equilibre (Marseilles, France). The goal of the book is to provide a high-quality overview on the state of the art in nonlinear sciences, and to promote the transfer of knowledge between the various domains in physics dealing with nonlinear phenomena.
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involvematrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality to other models in the analysis of variance, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
This book is devoted to the study of boundary value problems for nonlinear ordinary differential equations and focuses on questions related to the study of nonlinear interpolation. In 1967, Andrzej Lasota and Zdzislaw Opial showed that, under suitable hypotheses, if solutions of a second-order nonlinear differential equation passing through two distinct points are unique, when they exist, then, in fact, a solution passing through two distinct points does exist. That result, coupled with the pioneering work of Philip Hartman on what was then called unrestricted n-parameter families, has stimulated 50 years of development in the study of solutions of boundary value problems as nonlinear interpolation problems.The purpose of this book is two-fold. First, the results that have been generated in the past 50 years are collected for the first time to produce a comprehensive and coherent treatment of what is now a well-defined area of study in the qualitative theory of ordinary differential equations. Second, methods and technical tools are sufficiently exposed so that the interested reader can contribute to the study of nonlinear interpolation.
Ces notes sont consacrees aux inegalites et aux theoremes limites classiques pour les suites de variables aleatoires absolument regulieres ou fortement melangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'etude des processus faiblement dependants aux statisticiens ou aux probabilistes travaillant sur ces processus.
Physical and biological systems driven out of equilibrium may spontaneously evolve to form spatial structures. In some systems molecular constituents may self-assemble to produce complex ordered structures. This book describes how such pattern formation processes occur and how they can be modeled. Experimental observations are used to introduce the diverse systems and phenomena leading to pattern formation. The physical origins of various spatial structures are discussed, and models for their formation are constructed. In contrast to many treatments, pattern-forming processes in nonequilibrium systems are treated in a coherent fashion. The book shows how near-equilibrium and far-from-equilibrium modeling concepts are often combined to describe physical systems. This inter-disciplinary book can form the basis of graduate courses in pattern formation and self-assembly. It is a useful reference for graduate students and researchers in a number of disciplines, including condensed matter science, nonequilibrium statistical mechanics, nonlinear dynamics, chemical biophysics, materials science, and engineering.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.
This penultimate volume contains numerous original, elegant, and surprising results in 1-dimensional cellular automata. Perhaps the most exciting, if not shocking, new result is the discovery that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration. This is contrary to the well-known folklore that 256 local rules are necessary, leading to the new concept of quasi-global equivalence.Another surprising result is the introduction of a simple, yet explicit, infinite bit string called the super string S, which contains all random bit strings of finite length as sub-strings. As an illustration of the mathematical subtlety of this amazing discrete testing signal, the super string S is used to prove mathematically, in a trivial and transparent way, that rule 170 is as chaotic as a coin toss.Yet another unexpected new result, among many others, is the derivation of an explicit basin tree generation formula which provides an analytical relationship between the basin trees of globally-equivalent local rules. This formula allows the symbolic, rather than numerical, generation of the time evolution of any local rule corresponding to any initial bit-string configuration, from one of the 88 globally-equivalent local rules.But perhaps the most provocative idea is the proposal for adopting rule 137, over its three globally-equivalent siblings, including the heretofore more well-known rule 110, as the prototypical universal Turing machine.
In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena.
Cellular automata were introduced in the first half of the last century by John von Neumann who used them as theoretical models for self-reproducing machines. The authors present a self-contained exposition of the theory of cellular automata on groups and explore its deep connections with recent developments in geometric group theory, symbolic dynamics, and other branches of mathematics and theoretical computer science. The topics treated include in particular the Garden of Eden theorem for amenable groups, and the Gromov-Weiss surjunctivity theorem as well as the solution of the Kaplansky conjecture on the stable finiteness of group rings for sofic groups. The volume is entirely self-contained, with 10 appendices and more than 300 exercises, and appeals to a large audience including specialists as well as newcomers in the field. It provides a comprehensive account of recent progress in the theory of cellular automata based on the interplay between amenability, geometric and combinatorial group theory, symbolic dynamics and the algebraic theory of group rings which are treated here for the first time in book form.
This authoritative treatment covers theory, optimal estimation and a range of practical applications. The first book on the subject, and written by leading researchers, this clear and rigorous work presents a comprehensive theory for both the stability boundary and the stability regions of a range of nonlinear dynamical systems including continuous, discrete, complex, two-time-scale and non-hyperbolic systems, illustrated with numerical examples. The authors also propose new concepts of quasi-stability region and of relevant stability regions and their complete characterisations. Optimal schemes for estimating stability regions of general nonlinear dynamical systems are also covered, and finally the authors describe and explain how the theory is applied in applications including direct methods for power system transient stability analysis, nonlinear optimisation for finding a set of high-quality optimal solutions, stabilisation of nonlinear systems, ecosystem dynamics, and immunisation problems.
This monograph presents an approachable proof of Mirzakhani's curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmuller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani's curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani's Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.
This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathematics, chemistry, geology, economy, etc.), this work provides a wealth of information for teachers and researchers in these various fields. Chaouqi Misbah is a senior researcher at the CNRS (National Centre of Scientific Research in France). His work spans from pattern formation in nonlinear science to complex fluids and biophysics. In 2002 he received a major award from the French Academy of Science for his achievements and in 2003 Grenoble University honoured him with a gold medal. Leader of a group of around 40 scientists, he is a member of the editorial board of the French Academy of Science since 2013 and also holds numerous national and international responsibilities.
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.
This unique book aims to treat a class of nonlinear waves that are reflected from the boundaries of media of finite extent. It involves both standing (unforced) waves and resonant oscillations due to external periodic forcing. The waves are both hyperbolic and dispersive. To achieve this aim, the book develops the necessary understanding of linear waves and the mathematical techniques of nonlinear waves before dealing with nonlinear waves in bounded media. The examples used come mainly from gas dynamics, water waves and viscoelastic waves.
This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincare in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing approximate solutions, fails catastrophically due to the problem of small denominators. It then goes on to describe chaotic motion using the tools of discrete maps and Poincare sections. This leads to the two great landmarks of chaos theory, the Poincare-Birkhoff theorem and the so-called KAM theorem, one of the signal results in modern mathematics. The book concludes with an appendix discussing the relevance of the KAM theorem to the ergodic hypothesis and the second law of thermodynamics.Lectures on Nonlinear Mechanics and Chaos Theory is written in the easy conversational style of a great teacher. It features numerous computer-drawn figures illustrating the behavior of nonlinear systems. It also contains homework exercises and a selection of more detailed computational projects. The book will be valuable to students and faculty in physics, mathematics, and engineering.See Press Release: Problems in mechanics open the door to the orderly world of chaos |
![]() ![]() You may like...
IUTAM Symposium on Exploiting Nonlinear…
Ivana Kovacic, Stefano Lenci
Hardcover
R5,617
Discovery Miles 56 170
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,917
Discovery Miles 39 170
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,407
Discovery Miles 34 070
Synchronization in Infinite-Dimensional…
Igor Chueshov, Bjoern Schmalfuss
Hardcover
R3,658
Discovery Miles 36 580
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,881
Discovery Miles 28 810
Recent Trends In Chaotic, Nonlinear And…
Jan Awrejcewicz, Rajasekar Shanmuganathan, …
Hardcover
R4,490
Discovery Miles 44 900
|