![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
A renowned mathematician who considers himself both applied and theoretical in his approach, Peter Lax has spent most of his professional career at NYU, making significant contributions to both mathematics and computing. He has written several important published works and has received numerous honors including the National Medal of Science, the Lester R. Ford Award, the Chauvenet Prize, the Semmelweis Medal, the Wiener Prize, and the Wolf Prize. Several students he has mentored have become leaders in their fields. Two volumes span the years from 1952 up until 1999, and cover many varying topics, from functional analysis, partial differential equations, and numerical methods to conservation laws, integrable systems andscattering theory.After each paper, or collection of papers, is a commentary placing the paper in context and where relevant discussing more recent developments.Many of the papers in these volumes have become classics and should be read by any serious student of these topics.In terms of insight, depth, and breadth, Lax has few equals.The reader of this selecta will quickly appreciate his brilliance as well as his masterful touch.Having this collection of papers in one place allows one to follow the evolution of his ideas and mathematical interests and to appreciate how many of these papers initiated topics that developed lives of their own."
A renowned mathematician who considers himself both applied and theoretical in his approach, Peter Lax has spent most of his professional career at NYU, making significant contributions to both mathematics and computing. He has written several important published works and has received numerous honors including the National Medal of Science, the Lester R. Ford Award, the Chauvenet Prize, the Semmelweis Medal, the Wiener Prize, and the Wolf Prize. Several students he has mentored have become leaders in their fields. Two volumes span the years from 1952 up until 1999, and cover many varying topics, from functional analysis, partial differential equations, and numerical methods to conservation laws, integrable systems and scattering theory. After each paper, or collection of papers, is a commentary placing the paper in context and where relevant discussing more recent developments. Many of the papers in these volumes have become classics and should be read by any serious student of these topics. In terms of insight, depth, and breadth, Lax has few equals. The reader of this selecta will quickly appreciate his brilliance as well as his masterful touch. Having this collection of papers in one place allows one to follow the evolution of his ideas and mathematical interests and to appreciate how many of these papers initiated topics that developed lives of their own.
These notes introduce a new class of algebraic curves on Hilbert modular surfaces. These curves are called twisted Teichmuller curves, because their construction is very reminiscent of Hirzebruch-Zagier cycles. These new objects are analyzed in detail and their main properties are described. In particular, the volume of twisted Teichmuller curves is calculated and their components are partially classified. The study of algebraic curves on Hilbert modular surfaces has been widely covered in the literature due to their arithmetic importance. Among these, twisted diagonals (Hirzebruch-Zagier cycles) are some of the most important examples.
This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585-1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations.
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
This illustrated book provides a modern investigation into the bifurcation phenomena of physical and engineering problems. Systematic methods are used to examine experimental and computational data from numerous examples (soil, sand, kaolin, concrete, domes).
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Foliations, groups and pseudogroups are objects which are closely related via the notion of holonomy. In the 1980s they became considered as general dynamical systems. This book deals with their dynamics. Since "dynamics is a very extensive term, we focus on some of its aspects only. Roughly speaking, we concentrate on notions and results related to different ways of measuring complexity of the systems under consideration. More precisely, we deal with different types of growth, entropies and dimensions of limiting objects. Invented in the 1980s (by E. Ghys, R. Langevin and the author) geometric entropy of a foliation is the principal object of interest among all of them. Throughout the book, the reader will find a good number of inspirating problems related to the topics covered."
This book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
Based on chaos theory two very important points are clear: (I) random looking aperiodic behavior may be the product of determinism, and (2) nonlinear problems should be treated as nonlinear problems and not as simplified linear problems. The theoretical aspects ofchaos have been presented in great detail in several excellent books published in the last five years or so. However, while the problems associated with applications of the theory-such as dimension and Lyapunov exponentsestimation, chaosand nonlinear pre diction, and noise reduction-have been discussed in workshops and ar ticles, they have not been presented in book form. This book has been prepared to fill this gap between theory and ap plicationsand to assist studentsand scientists wishingto apply ideas from the theory ofnonlinear dynamical systems to problems from their areas of interest. The book is intended to be used as a text for an upper-level undergraduate or graduate-level course, as well as a reference source for researchers. My philosophy behind writing this book was to keep it simple and informative without compromising accuracy. I have made an effort to presentthe conceptsby usingsimplesystemsand step-by-stepderivations. Anyone with an understanding ofbasic differential equations and matrix theory should follow the text without difficulty. The book was designed to be self-contained. When applicable, examples accompany the theory. The reader will notice, however, that in the later chapters specific examples become less frequent. This is purposely done in the hope that individuals will draw on their own ideas and research projects for examples.
The past decade has seen a considerable surge of interest in historical and philo sophical studies of gravitation and relativity, due not only to the tremendous amount of world-wide research in general relativity and its theoretical and observational consequences, but also to an increasing awareness that a collaboration between working scientists, historians and philosophers of science is, in this field, partic ularly promising for all participants. The expanding activity in this field is well documented by recent volumes in this Einstein Studies series on the History of General Relativity as well as by a series of international conferences on this topic at Osgood Hill (1986), Luminy (1988), and Pittsburgh (1991). The fourth of these conferences, hosted by the Max Planck Institute for the History of Science, was held in Berlin from 31 July to 3 August 1995, with a record attendance of some 80 historians and philosophers of science, physicists, mathematicians, and as tronomers. Based on presentations at the Berlin conference, this volume provides an overview of the present state of research in this field, documenting not only the increasing scope of recent investigations in the history of relativity and gravitation but also the emergence of several key issues that will probably remain at the focus of debate in the near future. RELATIVITY IN THE MAKING The papers of this section deal with the origins and genesis of relativity theory."
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems.
The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.
The aim of this Book is to give an overview, based on the results of nearly three decades of intensive research, of transient chaos. One belief that motivates us to write this book is that, transient chaos may not have been appreciated even within the nonlinear-science community, let alone other scientific disciplines.
This the second volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010, bringing together 17 chapters on Applications of Non-Linear Dynamics. It presents early findings from experimental and computational investigations on Non-Linear Dynamics including studies on Dynamics of a System of Coupled Oscillators with Geometrically Nonlinear Damping, Assigning the Nonlinear Distortions of a Two-input Single-output System, A Multi-harmonic Approach to Updating Locally Nonlinear Structures, A Block Rocking on a Seesawing Foundation, and Enhanced Order Reduction of Forced Nonlinear Systems Using New Ritz Vectors.
Solitons are waves with exceptional stability properties which appear in many areas of physics. The basic properties of solitons are introduced here using examples from macroscopic physics (e.g. blood pressure pulses and fibre optical communications). The book then presents the main theoretical methods before discussing applications from solid state or atomic physics such as dislocations, excitations in spin chains, conducting polymers, ferroelectrics and Bose-Einstein condensates. Examples are also taken from biological physics and include energy transfer in proteins and DNA fluctuations. Throughout the book the authors emphasise a fresh approach to modelling nonlinearities in physics. Instead of a perturbative approach, nonlinearities are treated intrinsically and the analysis based on the soliton equations introduced in this book. Based on the authors' graduate course, this textbook gives an instructive view of the physics of solitons for students with a basic knowledge of general physics, and classical and quantum mechanics.
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - "The book as a whole is awell-balanced exposition that can be
recommended to all those who want to gain a thorough understanding
and proficiency in therecently developed methods. The book,
reflecting the currentstate of the art, can also be used for
teaching special courses."
The aim here is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple - yet rich - class of examples, delay differential equations. This textbook contains detailed proofs and many exercises, intended both for self-study and for courses at graduate level, as well as a reference for basic results. As the subtitle indicates, this book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. The book provides the reader with a working knowledge of applied functional analysis and dynamical systems.
This self-contained monograph presents a unified exposition of the thermodynamic formalism and some of its main extensions, with emphasis on the relation to dimension theory and multifractal analysis of dynamical systems. In particular, the book considers three different flavors of the thermodynamic formalism, namely nonadditive, subadditive, and almost additive, and provides a detailed discussion of some of the most significant results in the area, some of them quite recent. It also includes a discussion of the most substantial applications of these flavors of the thermodynamic formalism to dimension theory and multifractal analysis of dynamical systems.
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.
Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.
Synchronization of chaotic systems, a patently nonlinear
phenomenon, has emerged as a highly active interdisciplinary
research topic at the interface of physics, biology, applied
mathematics and engineering sciences. In this connection,
time-delay systems described by delay differential equations have
developed as particularly Last but not least, the presentation as a whole strives for a
balance between the necessary mathematical description of the
basics
Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. Ustunel" |
You may like...
The Larger Illustrated Guide Sasol Birds…
Ian Sinclair, Phil Hockey
Paperback
Two Oceans - A Guide To The Marine Life…
George Branch, Charles Griffiths
Paperback
Sasol Birds Of Southern Africa
Ian Sinclair, Phil Hockey
Paperback
(1)
|