Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
This book presents the Proceedings of the 54th Winter School of Theoretical Physics on Simplicity of Complexity in Economic and Social Systems, held in Ladek Zdroj, Poland, from 18 to 24 February 2018. The purpose of the book is to introduce the new interdisciplinary research that links statistical physics, and particular attention is given to link physics of complex systems, with financial analysis and sociology. The main tools used in these areas are numerical simulation of agents behavior and the interpretation of results with the help of complexity methods, therefore a background in statistical physics and in physics of phase transition is necessary to take the first steps towards these research fields called econophysics and sociophysics. In this perspective, the book is intended to graduated students and young researchers who want to begin the study of this established new area, which connects physicists, economists, sociologists and IT professionals, to better understand complexity phenomena existing not only in physics but also in complex systems being seemingly far from traditional view at physics.
This book intends to introduce some recent results on passivity of complex dynamical networks with single weight and multiple weights. The book collects novel research ideas and some definitions in complex dynamical networks, such as passivity, output strict passivity, input strict passivity, finite-time passivity, and multiple weights. Furthermore, the research results previously published in many flagship journals are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers and graduate students in Engineering and Mathematics who wish to study the passivity of complex dynamical networks.
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
This monograph has arisen out of a number of attempts spanning almost five decades to understand how one might examine the evolution of densities in systems whose dynamics are described by differential delay equations. Though the authors have no definitive solution to the problem, they offer this contribution in an attempt to define the problem as they see it, and to sketch out several obvious attempts that have been suggested to solve the problem and which seem to have failed. They hope that by being available to the general mathematical community, they will inspire others to consider-and hopefully solve-the problem. Serious attempts have been made by all of the authors over the years and they have made reference to these where appropriate.
This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on "Fundamentals of High Lift for Future Civil Aircraft," funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.
This volume arose from a semester at CIRM-Luminy on "Thermodynamic Formalism: Applications to Probability, Geometry and Fractals" which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.
This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painleve test and shows how Painleve analysis provides a powerful algorithmic approach to building explicit solutions to nonlinear ordinary and partial differential equations. It is illustrated with integrable equations such as the nonlinear Schroedinger equation, the Korteweg-de Vries equation, Henon-Heiles type Hamiltonians, and numerous physically relevant examples such as the Kuramoto-Sivashinsky equation, the Kolmogorov-Petrovski-Piskunov equation, and mainly the cubic and quintic Ginzburg-Landau equations. Extensively revised, updated, and expanded, this new edition includes: recent insights from Nevanlinna theory and analysis on both the cubic and quintic Ginzburg-Landau equations; a close look at physical problems involving the sixth Painleve function; and an overview of new results since the book's original publication with special focus on finite difference equations. The book features tutorials, appendices, and comprehensive references, and will appeal to graduate students and researchers in both mathematics and the physical sciences.
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.
Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences.
This book provides a comprehensive overview of statistical descriptions of turbulent flows. Its main objectives are to point out why ordinary perturbative treatments of the Navier-Stokes equation have been rather futile, and to present recent advances in non-perturbative treatments, e.g., the instanton method and a stochastic interpretation of turbulent energy transfer. After a brief introduction to the basic equations of turbulent fluid motion, the book outlines a probabilistic treatment of the Navier-Stokes equation and chiefly focuses on the emergence of a multi-point hierarchy and the notion of the closure problem of turbulence. Furthermore, empirically observed multiscaling features and their impact on possible closure methods are discussed, and each is put into the context of its original field of use, e.g., the renormalization group method is addressed in relation to the theory of critical phenomena. The intended readership consists of physicists and engineers who want to get acquainted with the prevalent concepts and methods in this research area.
Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the eighth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Modal Analysis, including papers on:Operational Modal & Modal Analysis Applications Experimental Techniques Modal Analysis, Measurements & Parameter Estimation Modal Vectors & Modeling Basics of Modal Analysis Additive Manufacturing & Modal Testing of Printed Parts
This book is aimed to make careful analysis to various mathematical problems derived from shock reflection by using the theory of partial differential equations. The occurrence, propagation and reflection of shock waves are important phenomena in fluid dynamics. Comparing the plenty of studies of physical experiments and numerical simulations on this subject, this book makes main efforts to develop the related theory of mathematical analysis, which is rather incomplete so far. The book first introduces some basic knowledge on the system of compressible flow and shock waves, then presents the concept of shock polar and its properties, particularly the properties of the shock polar for potential flow equation, which are first systematically presented and proved in this book. Mathematical analysis of regular reflection and Mach reflection in steady and unsteady flow are the most essential parts of this book. To give challenges in future research, some long-standing open problems are listed in the end. This book is attractive to researchers in the fields of partial differential equations, system of conservation laws, fluid dynamics, and shock theory.
This is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). This first volume of the textbook contains the parts "Kinematics" and "Dynamics". The part "Kinematics" presents in detail the theory of curvilinear coordinates which is actively used in the part "Dynamics", in particular, in the theory of constrained motion and variational principles in mechanics. For describing the motion of a system of particles, the notion of a Hertz representative point is used, and the notion of a tangent space is applied to investigate the motion of arbitrary mechanical systems. In the final chapters Hamilton-Jacobi theory is applied for the integration of equations of motion, and the elements of special relativity theory are presented.This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation. In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability.
This book presents exact, closed-form solutions for the response of a variety of nonlinear oscillators (free, damped, forced). The solutions presented are expressed in terms of special functions. To help the reader understand these `non-standard' functions, detailed explanations and rich illustrations of their meanings and contents are provided. In addition, it is shown that these exact solutions in certain cases comprise the well-known approximate solutions for some nonlinear oscillations.
This book focuses on bifurcation and stability in nonlinear discrete systems, including monotonic and oscillatory stability. It presents the local monotonic and oscillatory stability and bifurcation of period-1 fixed-points on a specific eigenvector direction, and discusses the corresponding higher-order singularity of fixed-points. Further, it explores the global analysis of monotonic and oscillatory stability of fixed-points in 1-dimensional discrete systems through 1-dimensional polynomial discrete systems. Based on the Yin-Yang theory of nonlinear discrete systems, the book also addresses the dynamics of forward and backward nonlinear discrete systems, and the existence conditions of fixed-points in said systems. Lastly, in the context of local analysis, it describes the normal forms of nonlinear discrete systems and infinite-fixed-point discrete systems. Examining nonlinear discrete systems from various perspectives, the book helps readers gain a better understanding of the nonlinear dynamics of such systems.
Nonlinear Structures & Systems, Volume 1: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the first volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear Reduced-order Modeling Jointed Structures: Identification, Mechanics, Dynamics Experimental Nonlinear Dynamics Nonlinear Model & Modal Interactions Nonlinear Damping Nonlinear Modeling & Simulation Nonlinearity & System Identification
This book discusses basic topics in the spectral theory of dynamical systems. It also includes two advanced theorems, one by H. Helson and W. Parry, and another by B. Host. Moreover, Ornstein's family of mixing rank-one automorphisms is given with construction and proof. Systems of imprimitivity and their relevance to ergodic theory are also examined. Baire category theorems of ergodic theory, scattered in literature, are discussed in a unified way in the book. Riesz products are introduced and applied to describe the spectral types and eigenvalues of rank-one automorphisms. Lastly, the second edition includes a new chapter "Calculus of Generalized Riesz Products", which discusses the recent work connecting generalized Riesz products, Hardy classes, Banach's problem of simple Lebesgue spectrum in ergodic theory and flat polynomials.
The 5th edition of this classic textbook covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. One major insight is the connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve that problem. End-of-chapter exercises are provided for all chapters. The material is organized into three separate parts. Part I offers a self-contained introduction to linear programming. The presentation in this part is fairly conventional, covering the main elements of the underlying theory of linear programming, many of the most effective numerical algorithms, and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. This part of the book explores the general properties of algorithms and defines various notions of convergence. In turn, Part III extends the concepts developed in the second part to constrained optimization problems. Except for a few isolated sections, this part is also independent of Part I. As such, Parts II and III can easily be used without reading Part I and, in fact, the book has been used in this way at many universities. New to this edition are popular topics in data science and machine learning, such as the Markov Decision Process, Farkas' lemma, convergence speed analysis, duality theories and applications, various first-order methods, stochastic gradient method, mirror-descent method, Frank-Wolf method, ALM/ADMM method, interior trust-region method for non-convex optimization, distributionally robust optimization, online linear programming, semidefinite programming for sensor-network localization, and infeasibility detection for nonlinear optimization.
This work provides a convincing motivation for and introduction to magnon-based computing. The challenges faced by the conventional semiconductor-transistor-based computing industry are contrasted with the many exciting avenues for developing spin waves (or magnons) as a complementary technology wherein information can be encoded, transmitted, and operated upon: essential ingredients for any computing paradigm. From this general foundation, one particular operation is examined: phase conjugation via four-wave-mixing (FWM). The author constructs an original theory describing the generation of a phase conjugate mirror with the remarkable property that any incident spin wave will be reflected back along the same direction of travel. After establishing a theoretical framework, the careful design of the experiment is presented, followed by the demonstration of a magnetic phase conjugate mirror using four-wave mixing for the first time. The thesis concludes with an investigation into the unexpected fractal behaviour observed arising from the phase conjugate mirror - a result that is testament to the richness and vibrancy of these highly nonlinear spin wave systems.
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Caratheodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Henon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
The main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
Written in the 1980s by one of the fathers of chaos theory, Otto E. Roessler, the manuscript presented in this volume eventually never got published. Almost 40 years later, it remains astonishingly at the forefront of knowledge about chaos theory and many of the examples discussed have never been published elsewhere. The manuscript has now been edited by Christophe Letellier - involved in chaos theory for almost three decades himself, as well as being active in the history of sciences - with a minimum of changes to the original text. Finally released for the benefit of specialists and non-specialists alike, this book is equally interesting from the historical and the scientific points of view: an unconventionally modern approach to chaos theory, it can be read as a classic introduction and short monograph as well as a collection of original insights into advanced topics from this field. |
You may like...
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,987
Discovery Miles 29 870
Chaos, Complexity and Leadership 2020…
Sefika Sule Ercetin, Suay Nilhan Acikalin, …
Hardcover
R4,593
Discovery Miles 45 930
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,644
Discovery Miles 36 440
Recent Trends In Chaotic, Nonlinear And…
Jan Awrejcewicz, Rajasekar Shanmuganathan, …
Hardcover
R4,178
Discovery Miles 41 780
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,311
Discovery Miles 33 110
Emerging Frontiers in Nonlinear Science
Panayotis G. Kevrekidis, Jesus Cuevas-Maraver, …
Hardcover
R4,921
Discovery Miles 49 210
Fault-tolerant Control and Diagnosis for…
Rafael Martinez-Guerra, Fidel Melendez-Vazquez, …
Hardcover
R2,796
Discovery Miles 27 960
|