![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Non-linear science
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
Complexity science has been a source of new insight in physical and social systems and has demonstrated that unpredictability and surprise are fundamental aspects of the world around us. This book is the outcome of a discussion meeting of leading scholars and critical thinkers with expertise in complex systems sciences and leaders from a variety of organizations, sponsored by the Prigogine Center at The University of Texas at Austin and the Plexus Institute, to explore strategies for understanding uncertainty and surprise. Besides contributions to the conference, it includes a key digest by the editors as well as a commentary by the late nobel laureate Ilya Prigogine, "Surprises in half of a century." The book is intended for researchers and scientists in complexity science, as well as for a broad interdisciplinary audience of both practitioners and scholars. It will well serve those interested in the research issues and in the application of complexity science to physical and social systems.
This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. The key topics include operators as "sums of squares" of real and complex vector fields, nonlinear evolution equations, local solvability, and hyperbolic questions.
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing's oscillator, Van der Pol's equation, Lorenz attractor, Roessler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as an undergraduate or graduate textbook or a comprehensive source for scientists, researchers and engineers, providing the statement of the art on energy flow or power flow theory and methods.
This book on recent investigations of the dynamics of celestial bodies in the solar and extra-Solar System is based on the elaborated lecture notes of a thematic school on the topic, held as a result of cooperation between the SYRTE Department of Paris Observatory and the section of astronomy of the Vienna University. Each chapter corresponds to a lecture of several hours given by its author(s). The book therefore represents a necessary and very precious document for teachers, students, and researchers in the ?eld. The ?rst two chapters by A. Lema ?tre and H. Skokos deal with standard topics of celestial mechanics: the ?rst one explains the basic principles of resonances in mechanics and their studies in the case of the Solar System. The differences between the various cases of resonance (mean motion, secular, etc. ) are emphasized together with resonant effects on celestial bodies moving around the Sun. The second one deals with approximative methods of describing chaos. These methods, some of them being classical, as the Lyapounov exponents, other ones being developed in the very recent past, are explained in full detail. The second one explains the basic principles of resonances in mechanics and their studies in the case of the Solar System. The differences between the various cases of resonance (mean motion, s- ular, etc. ) are emphasized together with resonant effects on celestial bodies moving around the Sun. The following three chapters by A. Cellino, by P. Robutel and J.
This book illustrates the broad range of Jerry Marsden's mathematical legacy in areas of geometry, mechanics, and dynamics, from very pure mathematics to very applied, but always with a geometric perspective. Each contribution develops its material from the viewpoint of geometric mechanics beginning at the very foundations, introducing readers to modern issues via illustrations in a wide range of topics. The twenty refereed papers contained in this volume are based on lectures and research performed during the month of July 2012 at the Fields Institute for Research in Mathematical Sciences, in a program in honor of Marsden's legacy. The unified treatment of the wide breadth of topics treated in this book will be of interest to both experts and novices in geometric mechanics. Experts will recognize applications of their own familiar concepts and methods in a wide variety of fields, some of which they may never have approached from a geometric viewpoint. Novices may choose topics that interest them among the various fields and learn about geometric approaches and perspectives toward those topics that will be new for them as well.
The dimension theory of dynamical systems has progressively developed, especially over the last two decades, into an independent and extremely active field of research. Its main aim is to study the complexity of sets and measures that are invariant under the dynamics. In particular, it is essential to characterizing chaotic strange attractors. To date, some parts of the theory have either only been outlined, because they can be reduced to the case of maps, or are too technical for a wider audience. In this respect, the present monograph is intended to provide a comprehensive guide. Moreover, the text is self-contained and with the exception of some basic results in Chapters 3 and 4, all the results in the book include detailed proofs. The book is intended for researchers and graduate students specializing in dynamical systems who wish to have a sufficiently comprehensive view of the theory together with a working knowledge of its main techniques. The discussion of some open problems is also included in the hope that it may lead to further developments. Ideally, readers should have some familiarity with the basic notions and results of ergodic theory and hyperbolic dynamics at the level of an introductory course in the area, though the initial chapters also review all the necessary material.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, which is sometimes effectively instantaneous. The book contains reviews on such diverse areas as evolution experiments with microorganisms, the origin and evolution of viruses, evolutionary dynamics of genes and environment in cancer development, aging as an evolution-facilitating program, evolution of vision and evolution of financial markets.
Metaphors, generalizations and unifications are natural and desirable ingredients of the evolution of scientific theories and concepts. Physics, in particular, obviously walks along these paths since its very beginning. This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics, one of the greatest monuments of contemporary physics. Conceived more than 130 years ago by Maxwell, Boltzmann and Gibbs, the BG theory exhibits uncountable - some of them impressive - successes in physics, chemistry, mathematics, and computational sciences, to name a few. Presently, more than two thousand publications, by over 1800 scientists around the world, have been dedicated to the nonextensive generalization. Remarkable applications have emerged, and its mathematical grounding is by now relatively well established. A pedagogical introduction to its concepts - nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT's, among others - is presented in this book as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions.
The articles in this volume are an outgrowth of an international conference entitled Variational and Topological Methods in the Study of Nonlinear Phe- nomena, held in Pisa in January-February 2000. Under the framework of the research project Differential Equations and the Calculus of Variations, the conference was organized to celebrate the 60th birthday of Antonio Marino, one of the leaders of the research group and a significant contrib- utor to the mathematical activity in this area of nonlinear analysis. The volume highlights recent advances in the field of nonlinear functional analysis and its applications to nonlinear partial and ordinary differential equations, with particular emphasis on variational and topological meth- ods. A broad range of topics is covered, including: concentration phenomena in PDEs, variational methods with applications to PDEs and physics, pe- riodic solutions of ODEs, computational aspects in topological methods, and mathematical models in biology. Though well-differentiated, the topics covered are unified through a com- mon perspective and approach. Unique to the work are several chapters on computational aspects and applications to biology, not usually found with such basic studies on PDEs and ODEs. The volume is an excellent reference text for researchers and graduate students in the above mentioned fields. Contributors are M. Clapp, M.J. Esteban, P. Felmer, A. Ioffe, W. Marzan- towicz, M. Mrozek, M. Musso, R. Ortega, P. Pilarczyk, M. del Pino, E. Sere, E. Schwartzman, P. Sintzoff, R. Turner, and I\f. Willem.
This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schroedinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily
At?rstsight,thisbookisaboutfacerecognitioninthebrain.Itsmorelasting value, however,lies in the paradigmatic way in which this particular problem is treated. From the basic ideas that are worked out here in concrete detail, it is a naturaland simple next step to at leastimagine, if not realizein model form, much more generalstructures and processes,thus helping to bridge the still tremendous chasm between mind and brain. It is the purpose of this foreword to point out these generic traits. For centuries, thinking about the brain has been dominated by the most complexmechanisticdevicesofthetime,clockwork,communicatinghydraulic tubesor,today,thecomputer.Thecomputer,takenasincarnationoftheU- versal Turing Machine, can implement any conceivable process, so that also a functional brain can surely be simulated on it, an idea that, beginning in the ?fties of the last century, has been seducing scientists to create "art- cial intelligence" in the computer. As a result we now have an information technology that displays many functional capabilities formerly regarded as the exclusive domain of the mind. As fascinating as this is, doting on "int- ligent machines" is systematically diverting our attention awayfrom the true problems of understanding the working of the brain.
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.
Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain. Written for: Researchers, engineers, graduate students in complexity, applied nonlinear dynamics, neuroscience
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world's leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
This volume contains the proceedings of the 19th International Conference on Difference Equations and Applications, held at Sultan Qaboos University, Muscat, Oman in May 2013. The conference brought together experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete time dynamical systems with applications to mathematical sciences and, in particular, mathematical biology, ecology, and epidemiology. It includes four invited papers and eight contributed papers. Topics covered include: competitive exclusion through discrete time models, Benford solutions of linear difference equations, chaos and wild chaos in Lorenz-type systems, advances in periodic difference equations, the periodic decomposition problem, dynamic selection systems and replicator equations, and asymptotic equivalence of difference equations in Banach Space. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete time dynamical systems and their applications.
This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?
This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems."
Nonlinear dynamics has been enjoying a vast development for nearly four decades resulting in a range of well established theory, with the potential to significantly enhance performance, effectiveness, reliability and safety of physical systems as well as offering novel technologies and designs. By critically appraising the state of the art, it is now time to develop design criteria and technology for new generation products/processes operating on principles of nonlinear interaction and in the nonlinear regime, leading to more effective, sensitive, accurate, and durable methods than what is currently available. This new approach is expected to radically influence the design, control and exploitation paradigms, in a magnitude of contexts. With a strong emphasis on experimentally calibrated and validated models, contributions by top-level international experts will foster future directions for the development of engineering technologies and design using robust nonlinear dynamics modelling and analysis.
The book collects the most relevant outcomes from the INdAM Workshop "Geometric Function Theory in Higher Dimension" held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.
Discrete periodic structures play an important role in physics, and have opened up an exciting new area of investigation in recent years. Questions relating to the control of light in such structures still represent a major challenge. It is this highly active field that is addressed in the present thesis. Using the model system of a photorefractive nonlinearity that allows one to simultaneously create and control photonic lattices by light, the author obtains a comprehensive picture of the control of nonlinear and quantum optics phenomena in photonic lattices. He describes and demonstrates experimentally for the first time resonant transitions in two-dimensional hexagonal lattices, including Rabi oscillations and Landau-Zener tunneling, as well as the direct control and exploitation of these transitions. A particular highlight of this thesis is the study of soliton-cluster switching and control of Zener tunneling.
This course-based text revisits classic concepts in nonlinear circuit theory from a very much introductory point of view: the presentation is completely self-contained and does not assume any prior knowledge of circuit theory. It is simply assumed that readers have taken a first-year undergraduate course in differential and integral calculus, along with an elementary physics course in classical mechanics and electrodynamics. Further, it discusses topics not typically found in standard textbooks, such as nonlinear operational amplifier circuits, nonlinear chaotic circuits and memristor networks. Each chapter includes a set of illustrative and worked examples, along with end-of-chapter exercises and lab exercises using the QUCS open-source circuit simulator. Solutions and other material are provided on the YouTube channel created for this book by the authors.
This self-contained book systematically explores the statistical dynamics on and of complex networks having relevance across a large number of scientific disciplines. The theories related to complex networks are increasingly being used by researchers for their usefulness in harnessing the most difficult problems of a particular discipline. The book is a collection of surveys and cutting-edge research contributions exploring the interdisciplinary relationship of dynamics on and of complex networks. Topics covered include complex networks found in nature-genetic pathways, ecological networks, linguistic systems, and social systems-as well as man-made systems such as the World Wide Web and peer-to-peer networks. The contributed chapters in this volume are intended to promote cross-fertilization in several research areas, and will be valuable to newcomers in the field, experienced researchers, practitioners, and graduate students interested in systems exhibiting an underlying complex network structure in disciplines such as computer science, biology, statistical physics, nonlinear dynamics, linguistics, and the social sciences.
This book deals with methods to evaluate scientific productivity. In the book statistical methods, deterministic and stochastic models and numerous indexes are discussed that will help the reader to understand the nonlinear science dynamics and to be able to develop or construct systems for appropriate evaluation of research productivity and management of research groups and organizations. The dynamics of science structures and systems is complex, and the evaluation of research productivity requires a combination of qualitative and quantitative methods and measures. The book has three parts. The first part is devoted to mathematical models describing the importance of science for economic growth and systems for the evaluation of research organizations of different size. The second part contains descriptions and discussions of numerous indexes for the evaluation of the productivity of researchers and groups of researchers of different size (up to the comparison of research productivities of research communities of nations). Part three contains discussions of non-Gaussian laws connected to scientific productivity and presents various deterministic and stochastic models of science dynamics and research productivity. The book shows that many famous fat tail distributions as well as many deterministic and stochastic models and processes, which are well known from physics, theory of extreme events or population dynamics, occur also in the description of dynamics of scientific systems and in the description of the characteristics of research productivity. This is not a surprise as scientific systems are nonlinear, open and dissipative.
This innovative volume introduces Trajectory Analysis, a new systems-based approach to measuring nonlinear dynamics in continuous change, to public health and epidemiology. It synthesizes influential strands of statistical and probability science (including chaos theory and catastrophe theory) to complement existing methods and models used in the health fields. The computational framework featured here pinpoints complex cause-and-effect processes in behavioral change as individuals and populations adjust to health interventions, with examples from neuroscience and cardiology. But this is no mere academic exercise, as the author illustrates how these methods can be harnessed toward finding real-world answers to longstanding public health problems, starting with treatment recidivism. Included in the coverage: * The universality of physical principles in the analysis of health and disease * The problem of recidivism in healthcare intervention studies * Stability and reversibility/irreversibility of health conditions * Chaos theory and sensitive dependence on initial conditions * Applications in health monitoring and geographic systems * Simulations, applications, and the challenge for public health A stimulating new take on statistics with powerful implications for future study, practice, and policy, Trajectory Analysis in Health Care should interest public health epidemiologists, researchers, clinicians, and policymakers. |
You may like...
Nonlinear Time Series Analysis with R
Ray Huffaker, Marco Bittelli, …
Hardcover
R2,751
Discovery Miles 27 510
The Defocusing Nonlinear Schrodinger…
Panayotis G. Kevrekidis, Dimitri J. Frantzeskakis, …
Paperback
R2,663
Discovery Miles 26 630
Chaos, Complexity and Leadership 2017…
Sefika Sule Ercetin, Nihan Potas
Hardcover
R5,292
Discovery Miles 52 920
Elegant Simulations: From Simple…
Julien Clinton Sprott, William Graham Hoover, …
Hardcover
R2,840
Discovery Miles 28 400
Operator Algebras and Applications - The…
Toke M. Carlsen, Nadia S. Larsen, …
Hardcover
R6,940
Discovery Miles 69 400
Recent Trends In Chaotic, Nonlinear And…
Jan Awrejcewicz, Rajasekar Shanmuganathan, …
Hardcover
R4,226
Discovery Miles 42 260
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,049
Discovery Miles 40 490
|