![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
This thesis presents a series of experimental techniques based on scanning probe microscopy, which make it possible access the degree of freedom of protons both in real and energy space. These novel techniques and methods allow direct visualization of the concerted quantum tunneling of protons within the hydrogen-bonded network and quantification of the quantum component of a single hydrogen bond at a water-solid interface for the first time. Furthermore, the thesis demonstrates that the anharmonic quantum fluctuations of hydrogen nuclei further weaken the weak hydrogen bonds and strengthen the strong ones. However, this trend was reversed when the hydrogen bond coupled to the local environment. These pioneering findings substantially advance our understanding of the quantum nature of H bonds at the molecular level.
This book presents the foundations of nuclear physics, covering several themes that range from subatomic particles to stars. Also described in this book are experimental facts relating to the discovery of the electron, positron, proton, neutron and neutrino. The general properties of nuclei and the various nuclear de-excitation processes based on the nucleon layer model are studied in greater depth. This book addresses the conservation laws of angular momentum and parity, the multipolar transition probabilities E and M, gamma de-excitation, internal conversion and nucleon emission de-excitation processes. The fundamental properties of and disintegrations, electron capture, radioactive filiations, and Bateman equations are also examined. Nuclear Physics 1 is intended for high school physics teachers, students, research teachers and science historians specializing in nuclear physics.
Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry.
This book provides a collection of up-to-date lectures on the physics of CP violation. As such it covers all relevant modern fields of elementary particle, nuclear and astrophysics. Special attention is paid to the neutral meson systems and the recent confirmation of CP violation in the B meson system. The theory and the novel methods needed for these experiments are given in detail. The classical and ongoing searches for the electric dipole moment of the neutron and other null tests of time-reversal symmetry are included. An elementary introduction is given to the astrophysical implications of CP violation, to tackle the puzzle of matter--antimatter asymmetry in our Universe. The aim of the book is to present recent achievements and discuss future developments in a way accessible to both postgraduate students and nonspecialist researchers. For the experienced researcher, the book will serve as a modern source of reference on this topic.
The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress-outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated. Source-codes used for the examples are also presented, this allows a reflection on the "superfluous chance," succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases.
This second edition was updated to include some of the recent developments, such as "increased-valence" structures for 3-electron-3-centre bonding, benzene, electron conduction and reaction mechanisms, spiral chain O4 polymers and recoupled-pair bonding. The author provides qualitative molecular orbital and valence-bond descriptions of the electronic structures for primarily electron-rich molecules, with strong emphasis given to the valence-bond approach that uses "increased-valence" structures. He describes how "long-bond" Lewis structures as well as standard Lewis structures are incorporated into "increased-valence" structures for electron-rich molecules. "Increased-valence" structures involve more electrons in bonding than do their component Lewis structures, and are used to provide interpretations for molecular electronic structure, bond properties and reactivities. Attention is also given to Pauling "3-electron bonds", which are usually diatomic components of "increased-valence" structures for electron-rich molecules.
When a projectile and a target nucleus interact, creating a composite nucleus, the energy initially concentrated on a few nucleons spreads through the composite nucleus, which evolves towards a state of statistical equilibrium. During this equilibration process, nucleons, or aggregates of nucleons, having considerable energy, may be ejected. This book gives a comprehensive and up-to-date account of the experimental and theoretical research that has been devoted, during the past 25 years, to the study of these pre-equilibrium reactions. After a historical introduction, the theories of the reactions are described in detail, beginning with the phenomenological exciton and master equation theories and going on to the fully quantum-mechanical theories of Feshbach, Kerman and Koonin, Tamura and Udagawa, and Weidenmuller and colleagues. The multistep compound and multistep direct theories are considered separately, and all the theories are extensively compared with experimental data. A detailed account of compound nucleus reactions is also included, together with a review of the theories of the nuclear-level densities that are needed to evaluate pre-equilibrium cross-sections. The main emphasis of the book is on nucleon-induced reactions, but those due to composite particles and heavy ions are also considered.
This book describes the state of the art across the broad range of spectroscopic techniques used in the study of biological systems. It reviews some of the latest advances achieved in the application of these techniques in the analysis and characterization of small and large biological compounds, covering topics such as VUV/UV and UV-visible spectroscopies, fluorescence spectroscopy, IR and Raman techniques, dynamic light scattering (DLS), circular dichroism (CD/SR-CD), pulsed electron paramagnetic resonance techniques, Moessbauer spectroscopy, nuclear magnetic resonance, X-ray methods and electron and ion impact spectroscopies. The second part of the book focuses on modelling methods and illustrates how these tools have been used and integrated with other experimental and theoretical techniques including also electron transfer processes and fast kinetics methods. The book will benefit students, researchers and professionals working with these techniques to understand the fundamental mechanisms of biological systems.
The study of nuclear moments parallels the development of nuclear physics as a whole. Thus it can prove an excellent pedagogical tool to acquaint oneself with the complexities and elegance of some of the most current and powerful nuclear models, and it is this that the authors have attempted in this book. Instead of presenting a compilation of theoretical calculations of nuclear moments, they have endeavoured to show to what extent nuclear moments can be used as a stringent test of current nuclear models and of their predictive power.
This book introduces the phenomenology and theory of hadron form factors in a consistent manner, deriving step-by-step the key equations, defining the form factors from the matrix elements of hadronic transitions and deriving their symmetry relations. Explained are several general concepts of particle theory and phenomenology exemplified by hadron form factors. The main emphasis here is on learning the analytical methods in particle phenomenology. Many examples of hadronic processes involving form factors are considered, from the pion electromagnetic scattering to heavy B-meson decays. In the second part of the book, modern techniques of the form factor calculation, based on the method of sum rules in the theory of strong interactions, quantum chromodynamics, are introduced in an accessible manner. This book will be a useful guide for graduate students and early-career researchers working in the field of particle phenomenology and experiments. Features: * The first book to address the phenomenology of hadron form factors at a pedagogical level in one coherent volume * Contains up-to-date descriptions of the most important form factors of the electroweak transitions investigated in particle physics experiments
This work addresses the computation of excited-state properties of systems containing thousands of atoms. To achieve this, the author combines the linear response formulation of time-dependent density functional theory (TDDFT) with linear-scaling techniques known from ground-state density-functional theory. This extends the range of TDDFT, which on its own cannot tackle many of the large and interesting systems in materials science and computational biology. The strengths of the approach developed in this work are demonstrated on a number of problems involving large-scale systems, including exciton coupling in the Fenna-Matthews-Olson complex and the investigation of low-lying excitations in doped p-terphenyl organic crystals.
This edited, multi-author book gathers selected, peer-reviewed contributions based on papers presented at the 23rd International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXIII), held in Mopani Camp, The Kruger National Park, South Africa, in September 2018. The content is primarily intended for scholars, researchers, and graduate students working at universities and scientific institutes who are interested in the structure, properties, dynamics, and spectroscopy of atoms, molecules, biological systems, and condensed matter.
This book tells the curious story of an unexpected finding that sheds light on a crucial moment in the development of physics: the discovery of artificial radioactivity induced by neutrons. The finding in question is a notebook, clearly written in Fermi's handwriting, which records the frenzied days and nights that Fermi spent experimenting alone, driven by his theoretical ideas on beta decay. The notebook was found by the authors while browsing through documents left by Oscar D'Agostino, the chemist among Fermi's group. From Fermi's notes, they reconstruct with skill and expertise the detailed timeline of the critical days leading up to his vital discovery. While much is already known about the road that led Fermi to his important result, this is the first time that it has been possible to reconstruct precisely when and how the initial evidence of neutron-induced decay was obtained. In relating this fascinating story, the book will be of great interest not only to those with a passion for the history of science but also to a wider audience.
Proceedings of the International Conferences EXA'08 (Exotic Atoms and Related Topics) and LEAP'08 (Low Energy Antiproton Physics) held from September 15th to 19th, 2008 in Vienna and hosted by the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences. Now the research in exotic atoms has a remarkable history of more than 50 years. Enormous success in the understanding of fundamental interactions and symmetries resulted from the research on these tiny objects at the femtoscale. This volume contains research papers on recent achievements and future opportunities of this highly interdisciplinary field of atomic, nuclear, and particle physics. The Proceedings are structured according to the conference session topics: exotic atoms, kaon-nucleon interaction, exotic decays, fundamental symmetries, particle trapping, antiproton collisions and antihydrogen, muon physics, nuclear physics with antiprotons, charm physics, baryons bound in nuclei, hadron and nuclear physics with antiprotons, new facilities and new ideas. Therefore, this volume represents a compilation of the most recent developments and new perspectives in the light of the upcoming research facilities (FAIR, J-PARC) and technologies. It is directed to researchers in the field and advanced students.
This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.
basic introduction to nuclear reactions two and three body kinematics accelerator based experimental techniques basic aspects of the accelerator and accessories vacuum physics radiation detector physics and its associated electronics Theoretical modelling and errors
Probabilistic fault displacement hazard analysis (PFDHA) is a relatively new methodology, and actual examples of applications are quite limited. The current publication provides an introduction to probabilistic approaches to fault displacement hazard assessment with reference to relevant IAEA safety standards. It delineates the most important aspects of PFDHA (including up to date practices, open problems, and challenging issues) within a coherent framework. The information provided will be valuable not only for Member States when applying PFDHA to the site safety assessment of existing installations, but also for nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers working in the area of seismic hazard assessmen
Rasmus Brogaard's thesis digs into the fundamental issue of how the
shape of a molecule relates to its photochemical reactivity. This
relation is drastically different from that of ground-state
chemistry, since lifetimes of excited states are often comparable
to or even shorter than the time scales of conformational changes.
Combining theoretical and experimental efforts in femto-second
time-resolved photoionization Rasmus Brogaard finds that a
requirement for an efficient photochemical reaction is the
prearrangement of the constituents in a reactive conformation.
On the night of March 26, 1938, nuclear physicist Ettore Majorana boarded a ship, cash and passport in hand. He was never seen again. In "A Brilliant Darkness," theoretical physicist Joao Magueijo tells the story of Majorana and his research group, "the Via Panisperna Boys," who discovered atomic fission in 1934. As Majorana, the most brilliant of the group, began to realize the implications of what they had found, he became increasingly unstable. Did he commit suicide that night in Palermo? Was he kidnapped? Did he stage his own death? "A Brilliant Darkness" chronicles Majorana's invaluable contributions to science--including his major discovery, the Majorana neutrino--while revealing the truth behind his fascinating and tragic life.
The present review volume not only covers a wide range of topics pertinent to nuclear science and technology, but has attracted a distinguished international authorship, for which the editors are grateful. The opening review by Drs. Janet Tawn and Richard Wakeford addresses the difficult matter of questioning sci- tific hypotheses in a court of law. The United Kingdom experienced a substantial nuclear accident in the 1950s in the form of the Windscale Pile fire. This in itself had both good and bad consequences; the setting up of a licensing authority to ensure nuclear safety was one, the understandable public sentiment concerning nuclear power (despite the fire occurring in a weapons pile) the other. Windscale today is subsumed in the reprocessing plant at Sellafield operated by British Nuclear Fuels plc and it was inevitable perhaps that when an excess cluster of childhood leukaemia was observed in the nearby village of Seascale that public concern should be promoted by the media, leading to the hearing of a claim of compensation brought on behalf of two of the families of BNFLs workers who had suffered that loss. The review article demonstrates the complexity of und- standing such a claim against the statistical fluctuations inherent and shows how the courts were persuaded of the need to propose a biological mechanism if responsibility were to be held. The Company were undoubtedly relieved by the finding.
This thesis identifies the turning point in chain length, after which alkanes self-solvate into a folded structure instead of an extended stretched conformation. After this turning point, London dispersion forces rearrange isolated n-alkanes into a particular hairpin-structure, while for shorter chain lengths, a simple stretched conformation is energetically preferred. This thesis can locate the experimental turning point for the first time in an interaction-free manner from measurements of unbranched alkanes at low temperatures in supersonic jet expansions. It contains a detailed analysis of the vibrational Raman spectra of the chain molecules, which is supported by comprehensive quantum chemical simulations. In this way, the detailed balance between inter-chain attraction and conformational flexibility can be quantified. The investigations are complemented by measurements of perfluoroalkanes and similarities and differences between the compounds are discussed. Furthermore, Nils Luttschwager determines the stiffnesses (elastic moduli) of two of the most common industrial polymers: polyethylene and polytetrafluorethylene. He uses in this thesis a sophisticated extrapolation to calculate this value from quantities of their building blocks, showing that the single polymer molecules can be as stiff as a rod of steel.
|
You may like...
Automotive Lighting and Human Vision
Burkard Woerdenweber, Joerg Wallaschek, …
Hardcover
R5,207
Discovery Miles 52 070
GCSE 9-1 Geography AQA: Revision Guide…
Rebecca Tudor, Tim Bayliss, …
Paperback
R335
Discovery Miles 3 350
Pearson REVISE Edexcel GCSE History…
Brian Dowse
Digital product license key
(1)R239 Discovery Miles 2 390
Pearson REVISE Edexcel GCSE History…
Rob Bircher
Digital product license key
R237
Discovery Miles 2 370
Pearson REVISE Edexcel GCSE Combined…
Stephen Hoare, Nigel Saunders, …
Paperback
(1)R439 Discovery Miles 4 390
|