![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure-Property Relationship being the second volume by the same author.
This book provides a rounded biography of Franz (later Sir Francis) Simon, his early life in Germany, his move to Oxford in 1933, and his experimental contributions to low temperature physics approximating absolute zero. After 1939 he switched his research to nuclear physics, and is credited with solving the problem of uranium isotope separation by gaseous diffusion for the British nuclear programme Tube Alloys. The volume is distinctive for its inclusion of source materials not available to previous researchers, such as Simon's diary and his correspondence with his wife, and for a fresh, well-informed insider voice on the five-power nuclear rivalry of the war years. The work also draws on a relatively mature nuclear literature to attempt a comparison and evaluation of the five nuclear rivals in wider political and military context, and to identify the factors, or groups of factors, that can explain the results.
This book provides a comprehensive look at the state of the art of externally driven and self-generated rotation as well as momentum transport in tokamak plasmas. In addition to recent developments, the book includes a review of rotation measurement techniques, measurements of directly and indirectly driven rotation, momentum sinks, self-generated flow, and momentum transport. These results are presented alongside summaries of prevailing theory and are compared to predictions, bringing together both experimental and theoretical perspectives for a broad look at the field. Both researchers and graduate students in the field of plasma physics will find this book to be a useful reference. Although there is an emphasis on tokamaks, a number of the concepts are also relevant to other configurations.
To all four of us, Carsten was the best possible friend and colleague. To Finn, he was a fellow student in the history of science for several years at the Niels Bohr Institute; to Relge, he was a welcome resource for personal and intellectual interac tion in an otherwise less than fertile environment for the history of science; Roger was Carsten's friend and advisor, not least in the development of the dissertation on which the present book is based; and as director of the Niels Bohr Archive, Erik was his main advisor in his historical work. Because he was the person closest to Carsten's work on his Ph. D. dissertation on the history of beta decay, on which the present book is based, it is only fitting that Erik stands as single author of the words in Carsten's memory at the very beginning of this book. Before his untimely death shortly after the completion of the Ph. D. disser tation, Carsten had himself plans to develop the dissertation into a book. Being a true perfectionist, he wanted to rework the manuscript substantively, especially with regard to relating it to the broader discussion among historians of science."
In this thesis, the author develops new high-power millimeter wave techniques for measuring the hyperfine structure of positronium (Ps-HFS) directly for the first time in the world. Indirect measurement of Ps-HFS in the literature might have systematic uncertainties related to the use of a static magnetic field. Development of the millimeter wave devices supports the precise determination of Ps-HFS by directly measuring the Breit-Wigner resonant transition from o-Ps to p-Ps without the magnetic field. At the same time, the width of the measured Breit-Wigner resonance directly provides the lifetime of p-Ps. This measurement is the first precise spectroscopic experiment involving the magnetic dipole transition and high-power millimeter waves. The development of a gyrotron and a Fabry-Perot cavity is described as providing an effective power of over 20 kW, which is required to cause the direct transition from o-Ps to p-Ps. Those values measured by the newly developed millimeter wave device pave the way for examining the discrepancy observed between conventional indirect experiments on Ps-HFS and the theoretical predictions of Quantum Electrodynamics.
The first nuclear engineers emerged from the Manhattan Project in the USA, UK and Canada, but remained hidden behind security for a further decade. Cosseted and cloistered by their governments, they worked to explore applications of atomic energy at a handful of national labs. This unique bottom-up history traces how the identities of these unusually voiceless experts - forming a uniquely state-managed discipline - were shaped in the context of pre-war nuclear physics, wartime industrial management, post-war politics and utopian energy programmes. Even after their eventual emergence at universities and companies, nuclear workers carried the enduring legacy of their origins. Their shared experiences shaped not only their identities, but our collective memories of the late twentieth century. And as illustrated by the Fukushima accident seven decades after the Manhattan project began, this book explains why they are still seen conflictingly as selfless heroes or as mistrusted guardians of a malevolent genie.
This Safety Guide provides recommendations on the establishment of a framework for safety in accordance with the IAEA safety standards for States deciding on and preparing to embark on a nuclear power programme. In this regard, it proposes 197 safety related actions to be taken in the first three phases of the development of the nuclear power programme, to achieve the foundation for a high level of safety throughout the entire lifetime of the nuclear power plant (NPP). This includes safety in the construction, commissioning, and operation of the NPP and the associated management of radioactive waste and spent fuel, and safety in decommissioning. Thus, it contributes to the building of leadership and management for safety and of an effective safety culture and serves as guidance for self-assessment by all organizations involved in the development of a safety infrastructure.
Taking the reader through the underlying principles of molecular
translational dynamics, Translational Dynamics and Magnetic
Resonance outlines the ways in which magnetic resonance, through
the use of magnetic field gradients, can reveal those dynamics. The
measurement of diffusion and flow, over different length and time
scales, provides unique insight regarding fluid interactions with
porous materials, as well as molecular organization in soft matter
and complex fluids.
The book is based on the lectures delivered at the XCIII Session of
the Ecole de Physique des Houches, held in August, 2009. The aim of
the event was to familiarize the new generation of PhD students and
postdoctoral fellows with the principles and methods of modern
lattice field theory, which aims to resolve fundamental,
non-perturbative questions about QCD without uncontrolled
approximations.
Deep Inelastic Scattering provides an up-to-date, self-contained
account of deep inelastic scattering in high-energy physics,
intended for graduate students and physicists new to the subject.
It covers the classic results which led to the quark-parton model
of hadrons and the establishment of quantum chromodynamics as the
theory of the strong nuclear force, in addition to new vistas in
the subject opened up by the electron-proton collider HERA. The
extraction of parton momentum distribution functions, a key input
for physics at hadron colliders such as the Tevatron at Fermi Lab
and the Large Hadron Collider at CERN, is described in detail. The
challenges of the HERA data at 'low x' are described and possible
explanations in terms of gluon dynamics and other models outlined.
This comprehensive text presents not only a detailed exposition of the basic principles of nuclear physics but also provides a contemporary flavour by covering the recent developments in the field. Starting with a synoptic view of the subject, the book explains various physical phenomena in nuclear physics along with experimental methods of measurement. Nuclear forces as encountered in two body problems are detailed next followed by the problems of radioactive decay. Nuclear reactions are then comprehensively explained along with the various models of reaction mechanism. This is followed by recent developments like the pre-equilibrium model and heavy ions induced reaction.
On the night of March 26, 1938, nuclear physicist Ettore Majorana boarded a ship, cash and passport in hand. He was never seen again. In "A Brilliant Darkness," theoretical physicist Joao Magueijo tells the story of Majorana and his research group, "the Via Panisperna Boys," who discovered atomic fission in 1934. As Majorana, the most brilliant of the group, began to realize the implications of what they had found, he became increasingly unstable. Did he commit suicide that night in Palermo? Was he kidnapped? Did he stage his own death? "A Brilliant Darkness" chronicles Majorana's invaluable contributions to science--including his major discovery, the Majorana neutrino--while revealing the truth behind his fascinating and tragic life.
SESSION 1- DESIGN ASPECTS - 1.1 Single Focusing Magnetic Deflection Mass Spectrometers - 1.2 The Design of Double Focusing Magnetic Deflection Instruments - 1.3 A New Cycloidal Mass Spectrometer - 1.4 A Time of Flight Mass Spectrometer - 1.5 Recent Developments in the Quadrupole Mass Filter - SESSION 2 - PHYSICAL AND CHROMATOGRAPHIC APPLICATIONS - 2.1 A Fast-scan Mass Spectrometer for Residual Gas Analysis and the Examination of Effluents from Gas Chromatography Columns - 2.2 Flavour Research with a Low Cost Fast-scan Mass Spectrometer - 2.3 A Gas Chromatograph-Mass Spectrometer Linkup Recent Developments - 2.4 A Small 1800 Deflection Partial Pressure-Total Pressure Gauge for Vacuum System Diagnosis - 2.5 A Cycloidal Mass Spectrometer Applied to the Measurement of the Speed of Sputter Ion Pumps - 2.6 The Sorption of Gases by Thin Films - SESSION 3 - CHEMICAL APPLICATIONS I - 3.1 The Use of a Quadrupole Mass Filter in the Study of a Reacting Surface - 3.2 Mass-spectrometric Investigation of the Formation of Di-imide by the Catalytic Decomposition of Hydrazine at Low Pressures on Platinum - 3.3 Rearrangement Processes in the Fragmentation of Organic Ions - 3.4 A Novel Ion in the Mass Spectra of Arylureas and Related Compounds - 3.5 Mass Spectra of Some Substituted Cyclotetrazenoboranes - 3.6 The Decomposition of 9,1O-Diphenylanthracene Under Electron Impact - SESSION 4 - CHEMICAL APPLICATIONS II - 4.1 Use of Multiplet Peaks in the Examination of High Molecular Weight Petroleum Fractions - 4.2 Inorganic Analysis of Spark Source Mass Spectrometry - 4.3 An Examination of Metal Chelates by Mass Spectrometry - 4.4 Data Handling and Instrumentation in the A.W.R.E. Mass Spectrometers - SYMPOSIUM IMPRESSIONS - INDEX
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
This book presents mechanics miniaturization trends explored step by step, starting with the example of the miniaturization of a mechanical calculator. The ultra-miniaturization of mechanical machinery is now approaching the atomic scale. In this book, molecule-gears, trains of molecule-gears, and molecule motors are studied -one molecule at a time- on a solid surface, using scanning probe manipulation protocols and in solution as demonstrated in the European project "MEMO". All scales of mechanical machinery are presented using the various lithography techniques currently available, from the submillimeter to the nanoscale. Researchers and nanomechanical engineers will find new inspirations for the construction of minute mechanical devices which can be used in diverse hostile environments, for example under radiation constraints, on the surface membrane of a living cell or immersed in liquid. The book is presented in a format accessible for university students, in particular for those at the Master and PhD levels.
Volume 1 of this three-part series introduces the fundamental concepts of quantum field theory using the formalism of canonical quantization. This volume is intended for use as a text for an introductory quantum field theory course that can include both particle and condensed matter physics students. Dr. Strickland starts with a brief review of classical field theory and uses this as a jumping off point for the quantization of classical field, thereby promoting them to proper quantum fields. He then presents the formalism for real and complex scalar field theories, fermion field quantization, gauge field quantization, toy models of the nuclear interaction, and finally the full Lagrangian for QED and its renormalization. Part of IOP Series in Nuclear Medicine.
This publication has been developed to assist IAEA Member States in establishing and maintaining regulatory control through notification, authorization, inspection and enforcement in relation to facilities and activities with radiation sources, in order to achieve the fundamental safety and security objectives. The publication addresses the implementation of the requirements for safety and security in a harmonized way, taking into account differences in the requirements as well as differences in States' regulatory infrastructures. For example, in some States the same regulatory body is responsible for the control of safety and security, while in others, safety and security are controlled by separate regulatory bodies. A harmonized approach for notification, authorization, inspection and enforcement is intended to improve the efficiency and effectiveness of regulatory control through concurrent inspection for safety and security.
This book reviews recent progress in our understanding of tokamak physics related to steady state operation, and addresses the scientific feasibility of a steady state tokamak fusion power system. It covers the physical principles behind continuous tokamak operation and details the challenges remaining and new lines of research towards the realization of such a system. Following a short introduction to tokamak physics and the fundamentals of steady state operation, later chapters cover parallel and perpendicular transport in tokamaks, MHD instabilities in advanced tokamak regimes, control issues, and SOL and divertor plasmas. A final chapter reviews key enabling technologies for steady state reactors, including negative ion source and NBI systems, Gyrotron and ECRF systems, superconductor and magnet systems, and structural materials for reactors. The tokamak has demonstrated an excellent plasma confinement capability with its symmetry, but has an intrinsic drawback with its pulsed operation with inductive operation. Efforts have been made over the last 20 years to realize steady state operation, most promisingly utilizing bootstrap current. Frontiers in Fusion Research II: Introduction to Modern Tokamak Physics will be of interest to graduate students and researchers involved in all aspects of tokamak science and technology.
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.
The textbook begins with exercises related to radioactive sources and decay schemes. The problems covered include series decay and how to determine the frequency and energy of emitted particles in disintegrations. The next chapter deals with the interaction of ionizing radiation, including the treatment of photons and charged particles. The main focus is on applications based on the knowledge of interaction, to be used in subsequent work and courses. The textbook then examines detectors and measurements, including both counting statistics and properties of pulse detectors. The chapter that follows is dedicated to dosimetry, which is a major subject in medical radiation physics. It covers theoretical applications, such as different equilibrium situations and cavity theories, as well as experimental dosimetry, including ionization chambers and solid state and liquid dosimeters. A shorter chapter deals with radiobiology, where different cell survival models are considered. The last chapter concerns radiation protection and health physics. Both radioecology and radiation shielding calculations are covered. The textbook includes tables to simplify the solutions of the exercises, but the reader is mainly referred to important websites for importing necessary data.
This book is about the drift, diffusion, and reaction of ions moving through gases under the influence of an external electric field, the gas temperature, and the number density. While this field was established late in the 19th century, experimental and theoretical studies of ion and electron swarms continue to be important in such varied fields as atomic and molecular physics, aeronomy and atmospheric chemistry, gaseous electronics, plasma processing, and laser physics. This book follows in the rigorous tradition of well-known older books on the subject, while at the same time providing a much-needed overview of modern developments with a focus on theory. Graduate students and researchers new to this field will find this book an indispensable guide, particularly those involved with ion mobility spectrometry and the use of ion transport coefficients to test and improve ab initio ion-neutral interaction potentials. Established researchers and academics will find in this book a modern companion to the classic references.
This book analyzes the effect of hydrogen on the atomic-level interactions in metals, detailing the corresponding changes in the physical properties of crystal lattice defects, diffusion, and phase transformations in metallic materials as a result of hydrogen loading. It presents a novel derivation of the structure of stacking faults, the mobility of dislocations, and short-range atomic order in hydrogen-infused metallic alloys based on the change in the concentration of free electrons. It reviews the current hypotheses behind hydrogen embrittlement of iron-, nickel, and titanium-based alloys, focusing on the phenomenon of hydrogen-enhanced localized plasticity and taking into account inherent atomic states in the alloys and other effects due to hydrogen loading. Finally, the book analyzes the use of hydrogen as an interim alloying element in the technological processing of titanium alloys, discussing the necessary preconditions for hydrogen-enhanced plasticity of metals. This book is an excellent resource for graduate students, academic researchers, and practicing engineers involved in the development of advanced hydrogen-resistant metallic materials.
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
|
You may like...
Geometry and its Applications
Vladimir Rovenski, Pawel Walczak
Hardcover
R4,645
Discovery Miles 46 450
New Developments in Statistical…
Zhezhen Jin, Mengling Liu, …
Hardcover
R4,614
Discovery Miles 46 140
An Introduction to the Technique of…
Domenico Cantone, Pietro Ursino
Hardcover
R1,402
Discovery Miles 14 020
Carleman Estimates and Applications to…
Mourad Bellassoued, Masahiro Yamamoto
Hardcover
R2,920
Discovery Miles 29 200
Multi-Agent-Based Simulation XII…
Daniel Villatoro, Jordi Sabater-Mir, …
Paperback
R1,706
Discovery Miles 17 060
Model-Based Control: - Bridging Rigorous…
Paul M.J. Van Den Hof, Carsten Scherer, …
Hardcover
R2,786
Discovery Miles 27 860
Advances in Human Vector Control
J. Marshall Clark, Jeffrey Bloomquist, …
Hardcover
R2,619
Discovery Miles 26 190
|