![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
This monograph takes stock of the situation in higher spin gauge theories for the first time. Besides a thorough recapitulation of the field's history, it reviews the progress that has been made and offers a pedagogical introduction to the subject. Abstract approaches to the theory are offered to facilitate a conceptual rethinking of the main problems and to help see patterns hidden by heavy formalism.
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
This invaluable book is an extensive set of lecture notes on various aspects of non-perturbative quantum chromodynamics--the fundamental theory of strong interaction on which nuclear and hadronic physics is based. The original edition of the book, written in the mid-1980's, had more of a review style. In the second edition the outline remains the same, but the text has been completely rewritten, and extended. Apart from the new developments over the years, this edition has benefited from several graduate courses which the author has taught at Stony Brook during the last decade. The text is now complemented by exercises and has a total of about 1000 references to major works, arranged by subject. Three major issues--the structure of the QCD vacuum, the structure of hadrons, and the physics of hot/dense matter--are addressed as "physics problems. Therefore, when discussing any specific subject, the book attempts to incorporate (1) all the solid theoretical results, (2) experimental information, and (3) results of numerical (lattice) simulations, which are playing an increasing role in quantum field theory in general, and the development of QCD in particular. "The QCD Vaccum, Hadrons and Superdense Matter takes the reader from the first encounter with the subject to the front line of research, as quickly as possible.
The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse's research in both magnetic and inertial confinement fusion, working with the world's top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.
The publication of the first edition of "Introduction to Supersymmetry and Supergravity" was a remarkable success. This second edition contains a substantial amount of new material especially on two-dimensional supersymmetry algebras, their irreducible representations as well as rigid and local (i.e. supergravity) theories of 2-dimensional supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. In addition, a chapter is devoted to a discussion on superconformal algebras in two dimensions and contains an account of super operator product expansion.
This carefully researched book presents facts and arguments showing, beyond a doubt, that nuclear fusion power will not be technically feasible in time to satisfy the world's urgent need for climate-neutral energy. The author describes the 70-year history of nuclear fusion; the vain attempts to construct an energy-generating nuclear fusion power reactor, and shows that even in the most optimistic scenario nuclear fusion, in spite of the claims of its proponents, will not be able to make a sizable contribution to the energy mix in this century, whatever the outcome of ITER. This implies that fusion power will not be a factor in combating climate change, and that the race to save the climate with carbon-free energy will have been won or lost long before the first nuclear fusion power station comes on line. Aimed at the general public as well as those whose decisions directly affect energy policy, this book will be a valuable resource for informing future debates.
High Energy Electron Beam Irradiation of Water, Wastewater and Sludge; C.N. Kurucz, et al.. Introduction. Electron Beam Technology. Aqueous Chemistry of High Energy Electrons. Disinfection of Wastewater Effluents. Irradiation of Toxic Organic Chemical in Aqueous Solutions. Gamma Irradiation Versus Electron Beam Irradiation. XRay Photon Spectroscopy Calculations; J.E. Fernandez, V.G. Molinari. Introduction. Relevant Aspects of Photon Interactions with Matter. Time-Independent Photon Transport Equation. Solution in a Half Space: Multiple Scattering Effects. Multiple Scattering Effects in the Characteristic Lines. Multiple Scattering of the Rayleigh and Compton Effects. Monte Carlo Methods in Advanced Computer Architectures; W.R. Martin. Introduction. Advanced Computer Architectures. Monte Carlo on Advanced Computer Architectures. Monte Carlo on Parallel Architectures. The WienerHermite Functional Method of Representing Random Noise and its Application to Point Reactor Kinetics Driven by Random Reactivity Fluctuations; K. Behringer. The WeinerHermite Functional Method. Application to Point Reactor Kinetics Driven by Random Reactivity Fluctuations. Index.
The work describes the production technology of standard medical radionuclides using reactors and cyclotrons for patient diagnosis and therapy. A special focus lies on the science and technology involved in the development of novel radionuclides for positron emission tomography (PET) and internal targeted radiotherapy. The availability of those radionuclides is opening up new potential in clinical research, especially in neurology, cardiology and oncology. The future perspectives of the developing technology are also discussed.
This volume covers invited papers presented during the La Rabida 2015 International Scientific Meeting on Nuclear Physics, which can be considered heir of a well known series of triennial international summer schools on Nuclear Physics organized from 1982 till 2003 by the Basic Nuclear Physics group in the University of Sevilla. The La Rabida 2015 meeting offered to graduate students and young researchers a broad view of the field of Nuclear Physics. The first invited speaker presented the state-of-the-art of Relativistic Mean Field calculations. The second set of notes covers selected topics in gamma ray spectroscopy with exotic nuclei. The third speaker presented an introduction to the subject of severe accidents in nuclear power plants. In the fourth set of notes, the author illustrated how to use laser spectroscopy to determine very important observables of atomic nuclei. The fifth speaker devoted its notes to explain several aspects of neutrino physics. Finally, the sixth speaker presented an overview of nuclear medicine and radiodiagnostic. In addition to this, the inclusion of the posters and seminars presented by the students gives a fresh and ample perspective on the many different problems of interest nowadays for the Nuclear Physics community.
This book is an invaluable guide to calibrating any infrared spectrum using noble gases as a reference. Featuring a detailed graphical and tabular overview of highly excited (Rydberg) states of neutral noble gases in the infrared range of 700-7000 cm-1, it helps researchers by providing high-precision experimental data that can be used in almost every infrared spectroscopic laboratory.
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.
Theory of Ionization and Electron Emission: Theory of Electron Ejection from Matter by Highly Charged Ion Impact; J.H. Macek. Auger Processes at Metallic Surfaces: Auger Processes at Surfaces; A. Niehaus. Kinetic Auger Processes and Shell Effects: Electron Emission from Silicon Induced by Bombardment with Oxygen Ions; E.A. Maydell. Kinetic Electron Emission from Thin Foils: Electron Ejection Induced by Fast Projectiles; G. Schiwietz. Surface Effects in Kinetic Electron Emission: Electron Emission Phenomena in Grazing Collisions of Fast Ions with Surfaces; H. Winter, et al. Spin Polarized Electron Emission: IonInduced Electron Emission from Magnetic and Nonmagnetic Surfaces; C. Rau, et al. Electron Emission and Charging of Insulators: Secondary Electron Emission from Insulators; J. Schou. Ionization Effects in Semiconductors and Insulators: Ionization Tracks; R.E. Johnson. 23 additional articles. Index.
The book is an up-to-date, self-contained account of deep inelastic scattering in high-energy physics. Intended for graduate students and physicists new to the subject, it covers the classic results which led to the quark-parton model of hadrons and the establishment of quantum chromodynamics as the theory of the strong nuclear force, in addition to new vistas in the subject opened up by the electron-proton collider HERA. The extraction of parton momentum distribution functions, a key input for physics at hadron colliders such as the Tevatron at Fermi Lab and the Large Hadron Collider at CERN, is described in detail. The challenges of the HERA data at 'low x' are described and possible explanations in terms of gluon dynamics and other models outlined. Other chapters cover: jet production at large momentum transfer and the determination of the strong coupling constant, electroweak interactions at very high momentum transfers, the extension of deep inelastic techniques to include hadronic probes, a summary of fully polarised inelastic scattering and the spin structure of the nucleon, and finally a brief account of methods in searching for signals 'beyond the standard model'.
This new text looks at Quantum Chromodynamics, the theory of the strong force between quarks, which form the fundamental building blocks of nuclear matter. With a primary focus on experiments, the authors also include an extensive theoretical introduction to the field, as well as many exercises with solutions explained in detail.
Fractal Structure in 4d Gravity.- A One Dimensional Ideal Gas of Spinons, or Some Exact Results on the XXX Spin Chain with Long Range Interaction.- Kodaira-Spencer Theory of Gravity.- 3d Gravity and Gauge Theories.- On the W-Gravity Spectrum and its G-Structure.- Light-Cone Quantization of Matrix Models at c>1.- Multicritical Points of 2-Matrix Models.- The Super Self-Dual Matreoshka.- The Phenomenology of Strings and Clusters in the 3-d Ising Model.- Conformai Field Theory Techniques in Large N Yang-Mills Theory.- to Differential W-Geometry.- Topological Strings and QCD in Two Dimensions.- Continuum QCD2 in Terms of Discrete Random Surfaces with Local Weights.- Strings and Causality.- Loop Equation and Area Law in Turbulence.- The Two-Dimensional String as a Topological Field Theory.- Linear Systems for 2d Poincare Supergravities.- Quantization of Mirror Symmetry.- Integrable Qft2 Encoded on Products of Dynkin Diagrams.- Remarks on Topological String Theories.- Hamiltonian Reduction of the BRST Complex and N=2 SUSY.- Lattice Models and N=2 Supersymmetry.- Canonical Construction of Liouville Field Operators with Arbitrary Spin.- Bethe Ansatz for the Bloch Particle in Magnetic Field.
This thesis covers several important topics relevant to our understanding of quark-gluon plasma. It describes measurement of the third-order harmonic flow using two-particle correlations and isolation of flow and non-flow contributions to particle correlations in gold-gold collisions. The work also investigates long-range longitudinal correlations in small systems of deuteron-gold collisions. The former is related to the hydrodynamic transport properties of the quark-gluon plasma created in gold-gold collisions. The latter pertains to the question whether hydrodynamics is applicable to small systems, such as deuteron-gold collisions, and whether the quark-gluon plasma can be formed in those small-system collisions. The work presented in this thesis was conducted with the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, where the center-of-mass energy of both collision systems was a factor of 100 larger than the rest mass of the colliding nuclei. The results contained in this thesis are highly relevant to our quest for deeper understanding of quantum chromodynamics. The results obtained challenge the interpretation of previous works from several other experiments on small systems, and provoke a fresh look at the physics of hydrodynamics and particle correlations pertinent to high energy nuclear collisions.
This book presents proton-3He elastic scattering experiments conducted at intermediate energies, with the aim of identifying three-nucleon force (3NF) effects in a four-nucleon scattering system. The 3NF plays an essential part in understanding various nuclear phenomena, and few-nucleon scatterings further offers a good opportunity to study the dynamical aspects of 3NFs. In particular, proton-3He scattering is one of the most promising approaches to an iso-spin dependence of 3NFs. The book in-depth explains the achieved development of polarized 3He target system for the proton-3He scattering experiments, and describes successful precise evaluation of the target polarization. The experiments yielded the first precise data for this system and offer a valuable resource for the study of 3NFs.
The complexity and vulnerability of the human body has driven the development of a diverse range of diagnostic and therapeutic techniques in modern medicine. The Nuclear Medicine procedures of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Radionuclide Therapy are well-established in clinical practice and are founded upon the principles of radiation physics. This book will offer an insight into the physics of nuclear medicine by explaining the principles of radioactivity, how radionuclides are produced and administered as radiopharmaceuticals to the body and how radiation can be detected and used to produce images for diagnosis. The treatment of diseases such as thyroid cancer, hyperthyroidism and lymphoma by radionuclide therapy will also be explored.
Optics has become one of the most dynamic fields of science since the first volume of Progress in Optics was published, forty years ago. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain 240 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.
A Modern View of Hadrons; H. Georgi. Hadron Production and Structure at Small Distances; B.R. Webber. The Physics of GBPIiGBP and D Mesons; M.S. Witherell. Top Quark Physics at Hadron Colliders; W.C. Carithers, Jr. New Directions in Calorimetry; W.J. Willis. Index.
|
![]() ![]() You may like...
Handbook on the Political Economy of…
Joan Costa-Font, Alberto Batinti, …
Hardcover
R6,757
Discovery Miles 67 570
Dsm-5-Tr Medical Coding - A Quickstudy…
Rona Bernstein, Elizabeth Jacobs
Book
R314
Discovery Miles 3 140
Annual Report of the State Board of…
Maryland State Board of Health
Hardcover
R1,058
Discovery Miles 10 580
|