![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
This book characterizes the kinematic and chemical structures of disk-forming regions around low-mass protostellar sources and their interplay based on Atacama Large Millimeter/submillimeter Array (ALMA) observations. It describes the chemical evolution of molecules formed in an interstellar gas using the ALMA observations of 5 Sun-like protostars at a spatial resolution of a few tens au scale, which unveils the physical mechanism of star and planetary formation. The book reviews the author's successful works, focusing on two key findings: (i) A drastic change in the chemical composition of the gas around the centrifugal barrier of the infalling-rotating envelopes, and (ii) the chemical composition in the disk-forming regions, which varies from source to source depending on the chemical characteristics of the parent molecular cloud. These findings are based on the fine characterization of physical structures based on careful kinematic analyses. An additional attraction is the inclusion of the skillful reviews of ALMA observatory and its observation and physical models to describe the observed gas structure.
Much instrumentation has been developed for imaging the trajectories of elementary particles produced in high energy collisions. Since 1968, gaseous detectors, beginning with multiwire chambers and drift chambers, have been used for the visualisation of particle trajectories and the imaging of X-rays, neutrons, hard gamma rays, beta rays and ultraviolet photons. This book commemorates the groundbreaking research leading to the evolution of such detectors carried out at CERN by Georges Charpak, Nobel Prizewinner for Physics in 1992. Besides collecting his key papers, the book also includes original linking commentary which sets his work in the context of other worldwide research.
This book presents contributions from the Workshop on Rare Isotopes and Fundamental Symmetries, which was held on September 1922, 2007, at the Institute for Nuclear Theory at the University of Washington. The book is the fourth in a series dedicated to exploring the science important to the proposed Facility for Rare Isotope Beams (FRIB). The topics covered by the contributions include Fermi beta decay, electron-neutrino correlations in nuclear beta decay: precision mass measurements, atomic parity violation, electric dipole moments, and hadronic parity violation and anapole moments. These topics highlight the recent work on the use of nuclei to understand the fundamental symmetries of nature. It presents current results as well as proposals for future experiments.
This volume is a collection of the contributions to the 13th National Conference on Nuclear Structure in China (NSC2010). It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of exotic nuclear structure, the structure and synthesis mechanism of superheavy nuclei, nuclear astrophysics, and the development of quantum many body approaches are covered.
It began with plutonium, the first element ever manufactured in quantity by humans. Fearing that the Germans would be the first to weaponise the atom, the United States marshalled brilliant minds and seemingly inexhaustible bodies to find a way to create a nuclear chain reaction of inconceivable explosive power. In a matter of months, the Hanford nuclear facility was built to produce the enigmatic and deadly new material that would fuel atomic bombs. In the desert of eastern Washington State, far from prying eyes, scientists Glenn Seaborg, Enrico Fermi and thousands of others-the physicists, engineers, labourers and support staff at the facility-manufactured plutonium for the bomb dropped on Nagasaki, and for the bombs in the current American nuclear arsenal, enabling the construction of weapons with the potential to end human civilisation. With his characteristic blend of scientific clarity and storytelling, Steve Olson asks why Hanford has been largely overlooked in histories of the Manhattan Project and the Cold War. Olson, who grew up just twenty miles from Hanford's B Reactor, recounts how a small Washington town played host to some of the most influential scientists and engineers in American history as they sought to create the substance at the core of the most destructive weapons ever created. The Apocalypse Factory offers a new generation this dramatic story of human achievement and ultimately, of lethal hubris.
The aim and scope of the conference and book were to bring world leaders in the areas of fission, structure of neutron-rich nuclei, superheavy elements, astrophysics and new facilities for these research areas to present the latest developments in both theory and experiment to serve as benchmarks for future research.World leaders describe the latest research including development of new facilities under construction to point out the latest and future direction in research. These proceedings are published following the conferences every four to five years since 1997.
This text describes novel treatments of quantum problems using enhanced quantization procedures. When treated conventionally, certain systems yield trivial and unacceptable results. This book describes enhanced procedures, generally involving extended correspondence rules for the association of a classical and a quantum theory, which, when applied to such systems, yield nontrivial and acceptable results. The text begins with a review of classical mechanics, Hilbert space, quantum mechanics, and scalar quantum field theory. Next, analytical skills are further developed, a special class of models is studied, and a discussion of continuous and discontinuous perturbations is presented. Later chapters cover two further classes of models both of which entail discontinuous perturbations. The final chapter offers a brief summary, concluding with a conjecture regarding interacting covariant scalar quantum field theories. Symmetry is repeatedly used as a tool to help develop solutions for simple and complex problems alike. Challenging exercises and detailed references are included.
This invaluable book is an extensive set of lecture notes on various aspects of non-perturbative quantum chromodynamics--the fundamental theory of strong interaction on which nuclear and hadronic physics is based. The original edition of the book, written in the mid-1980's, had more of a review style. In the second edition the outline remains the same, but the text has been completely rewritten, and extended. Apart from the new developments over the years, this edition has benefited from several graduate courses which the author has taught at Stony Brook during the last decade. The text is now complemented by exercises and has a total of about 1000 references to major works, arranged by subject. Three major issues--the structure of the QCD vacuum, the structure of hadrons, and the physics of hot/dense matter--are addressed as "physics problems. Therefore, when discussing any specific subject, the book attempts to incorporate (1) all the solid theoretical results, (2) experimental information, and (3) results of numerical (lattice) simulations, which are playing an increasing role in quantum field theory in general, and the development of QCD in particular. "The QCD Vacuum, Hadrons and Superdense Matter takes the reader from the first encounter with the subject to the front line of research, as quickly as possible.
The publication of the first edition of “Introduction to Supersymmetry and Supergravity” was a remarkable success. This second edition contains a substantial amount of new material especially on two-dimensional supersymmetry algebras, their irreducible representations as well as rigid and local (i.e. supergravity) theories of 2-dimensional supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. In addition, a chapter is devoted to a discussion on superconformal algebras in two dimensions and contains an account of super operator product expansion.
This user-friendly book on group theory introduces topics in as simple a manner as possible and then gradually develops those topics into more advanced ones, eventually building up to the current state-of-the-art. By using simple examples from physics and mathematics, the advanced topics become logical extensions of ideas already introduced. In addition to being used as a textbook, this book would also be useful as a reference guide for graduates and researchers in particle, nuclear and hadron physics.
There are very few with Philip Morrison's gifts, few who can lead us with firm knowledge whispering just the right encouragement as he guides us across the great ideas of science. Take this journey with one of the most astute navigators and you'll find yourself compelled to go deeper into some of the most daring adventures of modern science. Nothing is too grand or seemingly too trivial - the nature of time, the fabric of the atom, what it means to explore scientific horizons, the galaxies, even the search for unknown intelligence in the vast as-yet-uncharted universe. Then as deftly as Morrison takes us on a dazzling tour of the stars, he gently settles down for an intimate stop in the nursery where children have their first encounters with the things of everyday life, everyday things that cause us to wonder and make for discovery. With an equally firm grasp, Morrison, who witnessed the first tests of the atom bomb, takes us unflinchingly through some of the most frightening terrain of modern times, where the arms race can cause our ultimate destruction, but where sanity can still bring us peace. This extraordinary collection of essays by one of the most profound commentators on the successes and failures of the scientific enterprize concludes with lively portraits of men of science - Neils Bohr, Richard Feynman, Charles Babbage, among other notable friends and heroes.
CONTENTS - MAIN NOTATIONS - CONTENTS - CHAPTER I. - INTERACTION OF THE NUCLEAR RADIATION WITH MATTER - 1.1. Interaction of heavy charged particles with matter - 1.2. Passage of electrons through matter - 1.3. Interaction processes of gamma and X-rays - 1.4. Interaction processes of neutrons - 1.5. Conclusions - CHAPTER II. - FUNDAMENTAL PROCESSES IN SEMICONDUCTORS AND METALS - 2.1. Schrodinger equation. The particle inside the potential well - 2.2. The hydrogen atom - 2.3. Theory of the periodic system of elements - 2.4. Electrons in crystals - 2.5. Effective mass - 2.6. Energy bands - 2.7. Statistical distributions - 2.8. Equilibrium density of charge carriers in semiconductors - 2.9. Transport phenomena - 2.10. Recombination phenomena - 2.11. P-N junction - 2.12. Phenomena at the metal-semiconductor interface - CHAPTER III. - WORKING PRINCIPLES OF NUCLEAR RADIATION SEMICONDUCTOR DETECTORS - 3.1. Charge-carrier injection. The mean energy for electron-hole pair production - 3.2. The drift of charge-carriers in the electric field. The shape of the current and voltage pulse given by the collection of a single pair. - 3.3. Collection time of electron-hole pairs in a P-N abrupt junction - 3.4. Collection time of electron-hole pairs in coaxial Ge (Li) detectors - 3.5. Influence of SD equivalent circuit elements on the voltage and current pulse shape - 3.6. Collection of charge-carriers in real devices - 3.7. Collection of electric charges by diffusion from outside the depletion layer - 3.8. Detector noise - 3.9. Detector energy resolution - CHAPTER IV - CHARACTERISTICS OF SEMICONDUCTOR DETECTORS - 4.1. Electrical characteristics - 4.2. Detection characteristics - 4.3. Effects of temperature, magnetic field and light on the semiconductor detector characteristics - 4.4. Detector sensitivity to neutrons and gamma-rays - 4.5. Effects of radiation damage on detector characteristics - CHAPTER V - SEMICONDUCTOR DETECTOR TYPES - 5.1. Methods for obtaining high electric fields in semiconductors - 5.2. Homogeneous semiconductor detectors - 5.3. Diffused N-P junction detectors - 5.4. Surface-barrier detectors - 5.5. Guard-ring detectors - 5.6. Totally depleted detectors - 5.7. Neutron detectors - 5.8. Special detectors - 5.9. NIP detectors - CHAPTER VI - AMPLIFICATION OF SEMICONDUCTOR DETECTOR ELECTRIC PULSES - 6.1. Electric charge to voltage pulse conversion - 6.2. Charge-sensitive-preamplifier-noise specification and measurement - 6.S. Amplifier-noise sources - 6.4. Effects of amplifier shaping circuits on noise spectra - 6.5. RC-RC amplifier signal to noise ratio - CHAPTER VII - SEMICONDUCTOR DETECTOR ASSOCIATED ELECTRONICS - 7.1. Spectrometers with semiconductor detectors - 7.2. Charge sensitive preamplifiers - 7.3. Main amplifier - 7.4. Amplitude analyser and expander - 7.5. High amplitude stability pulse generator - 7.6. Transistorized apparatus - APPENDIX A I: Basic properties of Si and Ge - APPENDIX A II: Main natural and artificial alpha sources - APPENDIX A III: Analysis of some circuits used in charge sensitive preamplifiers - REFERENCES -
This volume is based on the proceedings of the International Symposium on "Strangeness in Nuclear and Hadronic Systems (SENDAI08)," which is the third in a series of symposia on nuclear physics involving strangeness following SENDAI98 and SENDAI03. With the expectation of the completion of new accelerator facilities such as J-PARC and other new experimental facilities, recent theoretical and experimental results and future prospects of strangeness nuclear physics are discussed in great depth by leading experts of the field. The topics involved are electromagnetic production of strangeness, structure and decay of hypernuclei, hyperon-nucleon and hyperon-hyperon interactions, among others. It will also serve as a good textbook for studying the current status of strangeness in nuclear and hadronic physics.
Much instrumentation has been developed for imaging the trajectories of elementary particles produced in high energy collisions. Since 1968, gaseous detectors, beginning with multiwire chambers and drift chambers, have been used for the visualisation of particle trajectories and the imaging of X-rays, neutrons, hard gamma rays, beta rays and ultraviolet photons. This book commemorates the groundbreaking research leading to the evolution of such detectors carried out at CERN by Georges Charpak, Nobel Prizewinner for Physics in 1992. Besides collecting his key papers, the book also includes original linking commentary which sets his work in the context of other worldwide research.
The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects.This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).
This book presents, in the form of reviews by world's leading physicists in wide-ranging fields in theoretical physics, the influence and prescience of Skyrme's daring idea of 1960, originally conceived for nuclear physics, that fermions can arise from bosons via topological solitons, pervasively playing a powerful role in wide-ranging areas of physics, from nuclear/astrophysics, to particle physics, to string theory and to condensed matter physics.The skyrmion description, both from gauge theory and from gauge/gravity duality, offers solutions to some long-standing and extremely difficult problems at high baryonic density, inaccessible by QCD proper. It also offers explanations and makes startling predictions for fascinating new phenomena in condensed matter systems. In both cases, what is at the core is the topology although the phenomena are drastically different, even involving different spacetime dimensions.This second edition has been expanded with addition of new reviews and extensively updated to take into account the latest developments in the field.
This is a comprehensive text for a course on non-relativistic nuclear reactions. The main formalisms used to describe nuclear reactions are explained clearly and coherently, and the reader is led from basic laws to the final formulae used to calculate measurable quantities. Combining a thorough theoretical approach with applications to recent experimental results, this text covers all main topics including potential scattering, formal reaction theory, the theory of the optical model, direct and compound reactions, fusion, deep inelastic collisions, and induced fission. Lecturers, graduate students, and researchers in nuclear and atomic physics will find this a useful textbook and reference work.
The Proceedings include talks given at the 4th Workshop on Exclusive Reactions at High Momentum Transfer at Jefferson Lab, Newport News, VA USA, the world's leading facility performing research on nuclear, hadronic and quark-gluon structure of matter. Exclusive reactions are becoming one of the major sources of information about the deep structure of the nucleons and other hadrons. The workshop focused on the application of a variety of exclusive reactions at high momentum transfer, utilizing unpolarized and polarized beams and targets, to obtain information about nucleon ground state and excited state structure at short distances. This is a subject which is central to the programs of current accelerators and especially planned future facilities. The topics include: generalized parton distributions, deeply virtual Compton scattering, deeply virtual meson production (DVMP), transverse structure of hadrons (TMD), hadron form factors - elastic and transition, quantum chromodynamics (perturbative, non-perturbative, lattice calculations), and physics to study at an Electron Ion Collider.
The First Nuclear Era is Alvin Weinberg's autobiography, the memoirs of a most influential American nuclear engineer/physicist. These reminiscences date from the dawning of the nuclear age in the early 1940s to the present. It is the story of one notable scientist's life and times and a look back at one of humankind's most ambitious endeavors: the attempt to harness and safely distribute nuclear power. Weinberg has witnessed and played a major part in many of the defining scientific moments of his era. Here he describes his academic career at the University of Chicago, under the tutelage of Nicolas Rashevsky and Carl Eckart. He recalls his wartime days at the Manhattan Project's Chicago Metallurgical Laboratory where he helped Nobelist Eugene Wigner design the Hanford plutonium producing reactors. He then focuses on what would become the abiding legacy of his professional life: his development of and involvement with nuclear reactors. In discussing both great commercial successes (such as the Light-Water Reactor) and unsuccessful experiments, Weinberg offers an objective critique of the technical and political shortcomings that have haunted the nuclear age. He also demonstrates how the lessons learned from unsuccessful reactors paved the way for later triumphs.
Integrating aspects of engineering, application physics, and medical science, Solid-State Radiation Detectors: Technology and Applications offers a comprehensive review of new and emerging solid-state materials-based technologies for radiation detection. Each chapter is structured to address the current advantages and challenges of each material and technology presented, as well as to discuss novel research and applications. Featuring contributions from leading experts in industry and academia, this authoritative text: Covers modern semiconductors used for radiation monitoring Examines CdZnTe and CdTe technology for imaging applications including three-dimensional capability detectors Highlights interconnect technology for current pixel detectors Describes hybrid pixel detectors and their characterizations Tackles the integrated analog signal processing read-out front ends for particle detectors Considers new organic materials with direct bandgap for direct energy detection Summarizes recent developments involving lanthanum halide and cerium bromide scintillators Analyzes the potential of recent progress in the field of crystallogenesis, quantum dots, and photonics crystals toward a new concept of x- and gamma-ray detectors based on metamaterials Explores position-sensitivity photomultipliers and silicon photomultipliers for scintillation crystals Solid-State Radiation Detectors: Technology and Applications provides a valuable reference for engineers and scientists looking to enhance the performance of radiation detector technology for medical imaging and other applications.
Nuclear nonproliferation is a critical global issue. A key technological challenge to ensuring nuclear nonproliferation and security is the detection of long-lived radioisotopes and fissionable nuclides in a non-destructive manner. This technological challenge requires new methods for detecting relevant nuclides and the development of new quantum-beam sources. For example, one new method that has been proposed and studied is nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Compton scattering of laser photons with electrons.The development of new methods requires the help of researchers from a wide range of fields, such as nuclear physics, accelerator physics, laser physics, etc. Furthermore, any new method must be compatible with the requirements of administrators and nuclear-material inspectors.
The book is a quantitative treatment of the theory and natural variations of light stable isotopes, and includes more than 100 original applications. Isotope distribution is rigorously discussed in the context of fractionation processes, thermodynamics, mass conservation, exchange kinetics and diffusion theory. The theoretical principles are illustrated with natural examples, emphasizing oygen and hydrogen isotope variations in natural waters, terrestrial and extraterrestrial rocks, and hydrothermal systems. New data on meteoric precipitation, rivers, and hydrothermal systems are included.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. |
![]() ![]() You may like...
Handbook of Network and System…
Jan Bergstra, Mark Burgess
Hardcover
Handbook of Research on Cloud and Fog…
Pethuru Raj, Anupama Raman
Hardcover
R6,633
Discovery Miles 66 330
A Graph-Theoretic Approach to Enterprise…
Horst Bunke, Peter J. Dickinson, …
Hardcover
R3,008
Discovery Miles 30 080
The GNU C Library Reference Manual…
Sandra Loosemore, Richard M. Stallman, …
Hardcover
R1,825
Discovery Miles 18 250
Formal Languages and Compilation
Stefano Crespi Reghizzi, Luca Breveglieri, …
Hardcover
R2,722
Discovery Miles 27 220
Modern Data Mining Algorithms in C++ and…
Timothy Masters
Paperback
Retargetable Compiler Technology for…
Rainer Leupers, Peter Marwedel
Hardcover
R2,981
Discovery Miles 29 810
Channel Coding: Theory, Algorithms, and…
David Declercq, Marc Fossorier, …
Paperback
|