![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
Separation of Isotopes of Biogenic Elements provides a detailed
overview of this area of research covering all aspects from the
value of isotope effects to their practical use (equilibrium
single-stage isotope effect - kinetics and mass transfer -
multiplication of the single-stage isotope separation factor -
technological peculiarity of processes) with the purpose of
extraction from the natural mixture of the enriched and highly
concentrated isotopes. In contrast to traditional books on the
theory of isotope separation, the theoretical part of the book
describes separation in two-phase processes in counter-flow
columns. The experimental part of the book presents systematic
analysis of specialists in the field of isotope separation in
counter-flow columns. This book will be of interest to scientists,
engineers and technical workers engaged in isotope separation
processes and isotope application in nuclear physics, medicine,
agro-chemistry, biology and other areas. This book may also be used
in teaching theory and practical aspects in courses on physical
chemistry and Isotope separation of light elements by
physicochemical methods.
This book represents a detailed and systematic account of the basic
principles, developments and applications of the theory of
nucleation. The book has four parts, which are devoted to the thermodynamics of nucleation, the kinetics of nucleation, the effect of various factors on nucleation and the application of the theory to other processes, which involve nucleation. The first two parts describe in detail the two basic approaches in nucleation theory - the thermodynamic and the kinetic ones. They contain derivations of the basic and most important formulae of the theory and discuss their limitations and possibilities for improvement. The third part deals with some of the factors that can affect nucleation and is a natural continuation of the first two chapters. The last part is devoted to the application of the theory to processes of practical importance such as melt crystallization and polymorphic transformation, crystal growth and growth of thin solid films, size distribution of droplets and crystallites in condensation and crystallization. The book is not just an account of the status quo in nucleation theory - throughout the book there are a number of new results as well as extensions and generalisations of existing ones.
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z=61-102, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=61-102, thermal cross sections, capture and fission resonance integrals, average resonance parameters, and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model neutron-induced fission. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections of importance to astrophysicists involved in nucleosynthesis modeling; s-, p-, and d- wave average radiative widths; nuclear level density parameters; and average fission widths derived from average fission cross sections.
There have been many recent discussions of the 'replication crisis' in psychology and other social sciences. This has been attributed, in part, to the fact that researchers hesitate to submit null results and journals fail to publish such results. In this book Allan Franklin and Ronald Laymon analyze what constitutes a null result and present evidence, covering a 400-year history, that null results play significant roles in physics.
This book presents 140 problems with solutions in introductory nuclear and particle physics. Rather than being only partially provided or simply outlined, as is typically the case in textbooks on nuclear and particle physics, all solutions are explained in detail. Furthermore, different possible approaches are compared. Some of the problems concern the estimation of quantities in realistic experimental situations. In general, solving the problems does not require a substantial mathematics background, and the focus is instead on developing the reader's sense of physics in order to work out the problem in question. Consequently, sections on experimental methods and detection methods constitute a major part of the book. Given its format and content, it offers a valuable resource, not only for undergraduate classes but also for self-assessment in preparation for graduate school entrance and other examinations.
This book presents the fundamentals and the state of the art of the photophysics of molecular oxygen. The author examines optical transitions between the lowest-lying electronic states in molecular oxygen and how these transitions respond to perturbation, either from an organic molecule or from the plasmon field of a metal nanoparticle. We live on a planet filled with light and oxygen. The interaction between these two components forms the basis of excited state chemistry spanning the fields of synthetic organic chemistry, materials chemistry, molecular biology, and photodynamic treatment of cancer. Still, the fundamental ways in which oxygen is affected by light is an active subject of research and is continually being developed and rationalized. In this book, readers will learn that singlet oxygen, the excited state of oxygen that exhibits unique chemical reactivity, can be selectively made via direct optical excitation of oxygen in a sensitizer-free system. Readers will also discover that this approach can perturb living cells differently depending on the singlet oxygen "dose".
Techniques of solid state nuclear magnetic resonance (NMR)
spectroscopy are constantly being extended to a more diverse range
of materials, pressing into service an ever-expanding range of
nuclides including some previously considered too intractable to
provide usable results. At the same time, new developments in both
hardware and software are being introduced and refined. This book
covers the most important of these new developments.
This book develops two exciting areas of particle physics research. It applies the recent new insights about the usefulness of helicity amplitudes in understanding gauge theory to the long-standing effort to understand theories with both electric and magnetic charges. It is known that for some supersymmetric theories there is an exact duality that relates two descriptions of the physics, one where the electric charges are weakly coupled and another where the electric charges are strongly coupled. The calculations in this thesis suggest that this duality can also hold in the low-energy limit of nonsupersymmetric gauge theories. The idea of addressing the hierarchy problem of the standard model Higgs mechanism using conformal symmetry is also explored. Analogously to "Little Higgs" models, where divergences are cancelled only at one-loop order, models are studied that have infrared conformal fixed points which related gauge and Yukawa couplings, allowing for a cancellation between seemingly unrelated quantum loop diagrams.
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections of importance to astrophysicists involved in nucleosynthesis modeling; s-, p-, and d-wave average radiative widths; and, nuclear level density parameters.
an integrated approach to electron transfer phenomena
an integrated approach to electron transfer phenomena
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L-H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfven Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
The two decades between the first and second world wars saw the emergence of nuclear physics as the dominant field of experimental and theoretical physics, owing to the work of an international cast of gifted physicists. Prominent among them were Ernest Rutherford, George Gamow, the husband and wife team of Frederic and Irene Joliot-Curie, John Cockcroft and Ernest Walton, Gregory Breit and Eugene Wigner, Lise Meitner and Otto Robert Frisch, the brash Ernest Lawrence, the prodigious Enrico Fermi, and the incomparable Niels Bohr. Their experimental and theoretical work arose from a quest to understand nuclear phenomena; it was not motivated by a desire to find a practical application for nuclear energy. In this sense, these physicists lived in an 'Age of Innocence'. They did not, however, live in isolation. Their research reflected their idiosyncratic personalities; it was shaped by the physical and intellectual environments of the countries and institutions in which they worked. It was also buffeted by the political upheavals after the Great War: the punitive postwar treaties, the runaway inflation in Germany and Austria, the Great Depression, and the intellectual migration from Germany and later from Austria and Italy. Their pioneering experimental and theoretical achievements in the interwar period therefore are set within their personal, institutional, and political contexts. Both domains and their mutual influences are conveyed by quotations from autobiographies, biographies, recollections, interviews, correspondence, and other writings of physicists and historians.
This edited, multi-author volume contains selected, peer-reviewed contributions based on the presentations given at the 21th International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXI), held in Vancouver, Canada, in July 2016. This book is primarily aimed at scholars, researchers and graduate students working at universities and scientific laboratories and interested in the structure, properties, dynamics and spectroscopy of atoms, molecules, biological systems and condensed matter.
This book describes advanced research on the structures and photochemical properties of polyatomic molecules and molecular clusters having various functionalities under cold gas-phase conditions. Target molecules are crown ethers, polypeptides, large size protonated clusters, metal clusters, and other complex polyatomic molecules of special interest. A variety of advanced frequency and time-domain laser spectroscopic methods are applied. The book begins with the principle of an experimental setup for cold gas-phase molecules and various laser spectroscopic methods, followed by chapters on investigation of specific molecular systems. Through a molecular-level approach and analysis by quantum chemical calculation, it is possible to learn how atomic and molecular-level interactions (van der Waals, hydrogen-bonding, and others) control the specific properties of molecules and clusters. Those properties include molecular recognition, induced fitting, chirality, proton and hydrogen transfer, isomerization, and catalytic reaction. The information will be applicable to the design of new types of functional molecules and nanoparticles in the broad area that includes applied chemistry, drug delivery systems, and catalysts.
This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
A recipient of the PROSE 2017 Honorable Mention in Chemistry & Physics, Radioactivity: Introduction and History, From the Quantum to Quarks, Second Edition provides a greatly expanded overview of radioactivity from natural and artificial sources on earth, radiation of cosmic origins, and an introduction to the atom and its nucleus. The book also includes historical accounts of the lives, works, and major achievements of many famous pioneers and Nobel Laureates from 1895 to the present. These leaders in the field have contributed to our knowledge of the science of the atom, its nucleus, nuclear decay, and subatomic particles that are part of our current knowledge of the structure of matter, including the role of quarks, leptons, and the bosons (force carriers). Users will find a completely revised and greatly expanded text that includes all new material that further describes the significant historical events on the topic dating from the 1950s to the present.
The work describes the production technology of standard medical radionuclides using reactors and cyclotrons for patient diagnosis and therapy. A special focus lies on the science and technology involved in the development of novel radionuclides for positron emission tomography (PET) and internal targeted radiotherapy. The availability of those radionuclides is opening up new potential in clinical research, especially in neurology, cardiology and oncology. The future perspectives of the developing technology are also discussed.
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.
This new text looks at Quantum Chromodynamics, the theory of the strong force between quarks, which form the fundamental building blocks of nuclear matter. With a primary focus on experiments, the authors also include an extensive theoretical introduction to the field, as well as many exercises with solutions explained in detail.
This is a comprehensive text for a course on non-relativistic nuclear reactions. The main formalisms used to describe nuclear reactions are explained clearly and coherently, and the reader is led from basic laws to the final formulae used to calculate measurable quantities. Combining a thorough theoretical approach with applications to recent experimental results, this text covers all main topics including potential scattering, formal reaction theory, the theory of the optical model, direct and compound reactions, fusion, deep inelastic collisions, and induced fission. Lecturers, graduate students, and researchers in nuclear and atomic physics will find this a useful textbook and reference work. |
You may like...
Niels Bohr - Collected Works, Volume 13…
Finn Aaserud
Hardcover
Measuring Nothing, Repeatedly - Null…
Allan Franklin, Ronald Laymon
Paperback
R758
Discovery Miles 7 580
Resonant Tunneling Diode Photonics…
Charlie Ironside, Bruno Romeira, …
Paperback
R752
Discovery Miles 7 520
|