Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Nursing & ancillary services
This book describes a set of novel statistical algorithms designed to infer functional connectivity of large-scale neural assemblies. The algorithms are developed with the aim of maximizing computational accuracy and efficiency, while faithfully reconstructing both the inhibitory and excitatory functional links. The book reports on statistical methods to compute the most significant functional connectivity graph, and shows how to use graph theory to extract the topological features of the computed network. A particular feature is that the methods used and extended at the purpose of this work are reported in a fairly completed, yet concise manner, together with the necessary mathematical fundamentals and explanations to understand their application. Furthermore, all these methods have been embedded in the user-friendly open source software named SpiCoDyn, which is also introduced here. All in all, this book provides researchers and graduate students in bioengineering, neurophysiology and computer science, with a set of simplified and reduced models for studying functional connectivity in in silico biological neuronal networks, thus overcoming the complexity of brain circuits.
This book discusses the development of various reliable scanning electrochemical microscopy (SECM) imaging techniques for studying the distribution of biomarkers and nanomaterials in thin and thick animal samples, plant antioxidant (AO) defense systems, as well as human melanoma. The authors demonstrate that SECM could improve the diagnosis and understanding of different melanoma stages on the basis of highly resolved maps of the tyrosinase distribution. Tyrosinase is the key enzyme involved in fruit maturation and is a biomarker for melanoma. As such the book presents various tyrosinase SECM detection strategies developed for the analysis of the spatial distribution of tyrosinase in melanoma and in banana samples. It describes the first imaging of the redox active proteins within the entire mouse heart with an SECM system using a spider probe composed of eight independent microelectrodes. Further, it investigates distributions of injected graphene nanoribbons (GONRs) for drug delivery by Soft-Probe-SECM. Lastly, the book outlines a non-invasive electrochemical strategy for mapping the AO activity of apple peel using Soft-Probe-SECM.
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.
This book outlines comprehensively the main medical uses of aptamers, from diagnosis to therapeutics in fourteen chapters. Pioneering topics covered include aptamer pharmaceuticals, aptamers for malign tumors, aptamers for personalized therapeutics and aptamers for point-of-care testing. The book offers an essential guide for medical scientists interested in developing aptamer-based schemes for better theranostics. It is therefore of interest for not only academic researchers, but also practitioners and medical researchers in various fields of medical science, medical research and bio-analytical chemistry.
This book provides a concise overview of VR systems and their cybersickness effects, giving a description of possible reasons and existing solutions to reduce or avoid them. Moreover, the book explores the impact that understanding how efficiently our brains are producing a coherent and rich representation of the perceived outside world would have on helping VR technics to be more efficient and friendly to use. Getting Rid of Cybersickness will help readers to understand the underlying technics and social stakes involved, from engineering design to autonomous vehicle motion sickness to video games, with the hope of providing an insight of VR sickness induced by the emerging immersive technologies. This book will therefore be of interest to academics, researchers and designers within the field of VR, as well as industrial users of VR and driving simulators.
This book summarizes the recent advances in applications of starch in state-of-the-art drug carriers (hydrogel, micro- and nano-particulate carriers) with stimulus-responsive and target-specific properties. It also highlights the role of starch and its derivatives in transmucosal administration to improve the bioavailability of drugs. Further, it outlines the principles of effective, advanced, starch-based drug delivery systems and illustrates how these principles are key to the development of future drug delivery strategies. This interesting reference resource is useful for students, researchers and engineers in the fields of carbohydrate chemistry, polymer sciences and drug delivery.
This book covers the latest advances, applications, and challenges in orthopedic biomaterials. Topics covered include materials for orthopedic applications, including nanomaterials, biomimetic materials, calcium phosphates, polymers, biodegradable metals, bone grafts/implants, and biomaterial-mediated drug delivery. Absorbable orthopedic biomaterials and challenges related to orthopedic biomaterials are covered in detail. This is an ideal book for graduate and undergraduate students, researchers, and professionals working with orthopedic biomaterials and tissue engineering. This book also: Describes biodegradable metals for orthopedic applications, such as Zn-based medical implants Thoroughly covers various materials for orthopedic applications, including absorbable orthopedic biomaterials with a focus on polymers Details the state-of-the-art research on orthopedic nanomaterials and nanotechnology
This thesis mainly focuses on the design and synthesis of novel multifunctional nanoprobes, investigating their feasibility for applications involving sensing, molecular imaging, and the simultaneous diagnosis and therapy of cancer. Above all, it discusses the development of innovative nanomaterials to address the issues limiting the effectiveness of currently available nanoprobes such as the synthesis shortcoming and poor performance in sensing, imaging and therapeutic applications. One of the strengths of this thesis is its integration of knowledge from chemistry, materials science and biomedicine. Further, it presents the theoretical fundamentals in the design of nanoprobes, which can offer guidance for future studies on the development of novel multifunctional nanomaterials with significantly enhanced performance.
This book addresses the background and significance of the factors potentially influencing the clinical and biological outcomes of metal-on-metal hip implants.Metal-on-metal bearings were introduced and evaluated as an alternative to other bearing couples, particularly metal-on-polyethylene, due to their enhanced wear resistance as determined in laboratory testing.Initially, reports of short-term clinical outcomes were favorable and an increasing number of metal-on-metal prostheses were implanted. Subsequently, isolated case findings describing adverse tissue responses around the articulation became the harbinger of an increasing number of reports describing pseudotumors and other significant lymphocytic-based responses associated with metal-on-metal prostheses. Questions have been raised as to whether this is an implant, design, or patient-specific response. The reasons why some patients have a negative biological response and pathology while others do not remain to be determined, but tens of thousands of patients in the US, the UK, and around the world are considered to be at risk. Leading researchers and clinicians describe the issues related to the nature of the biological and pathological responses and the protocols that should be followed to determine if an adverse response is occurring. This book is essential reading for researchers, engineers, and orthopaedic surgeons who are involved in the design, evaluation, and implantation of metal-on-metal prostheses."
This book provides a thorough overview of cutting-edge research on electronics applications relevant to industry, the environment, and society at large. It covers a broad spectrum of application domains, from automotive to space and from health to security, while devoting special attention to the use of embedded devices and sensors for imaging, communication and control. The book is based on the 2016 ApplePies Conference, held in Rome, Italy in September 2016, which brought together researchers and stakeholders to consider the most significant current trends in the field of applied electronics and to debate visions for the future. Areas addressed by the conference included information communication technology; biotechnology and biomedical imaging; space; secure, clean and efficient energy; the environment; and smart, green and integrated transport. As electronics technology continues to develop apace, constantly meeting previously unthinkable targets, further attention needs to be directed toward the electronics applications and the development of systems that facilitate human activities. This book, written by industrial and academic professionals, represents a valuable contribution in this endeavor.
Describing several new biometric technologies, such as high-resolution fingerprint, finger-knuckle-print, multi-spectral backhand, 3D fingerprint, tongueprint, 3D ear, and multi-spectral iris recognition technologies, this book analyzes a number of efficient feature extraction, matching and fusion algorithms and how potential systems have been developed. Focusing on how to develop new biometric technologies based on the requirements of applications, and how to design efficient algorithms to deliver better performance, the work is based on the author's research with experimental results under different challenging conditions described in the text. The book offers a valuable resource for researchers, professionals and postgraduate students working in the fields of computer vision, pattern recognition, biometrics, and security applications, amongst others.
Integrating basic to applied science and technology in medicine, pharmaceutics, molecular biology, biomedical engineering, biophysics and irreversible thermodynamics, this book covers cutting-edge research of the structure and function of biomaterials at a molecular level. In addition, it examines for the first time studies performed at the nano- and micro scale. With innovative technologies and methodologies aiming to clarify the molecular mechanism and macroscopic relationship, Nano/Micro Science and Technology in Biorheology thoroughly covers the basic principles of these studies, with helpful step-by-step explanations of methodologies and insight into medical applications. Written by pioneering researchers, the book is a valuable resource for academics and industry scientists, as well as graduate students, working or studying in bio-related fields.
The goal of this book is to close the gap between high technology and accessibility for people having lost their independence due to the loss of physical and/or cognitive capabilities. Robots and mechatronic devices bring the opportunity to improve the autonomy of disabled people and facilitate their social and professional integration by assisting them to perform daily living tasks. Technical topics of interest include, but are not limited to: Communication and learning applications in SCI an CP, Interface and Internet-based designs, Issues in human-machine interaction, Personal robotics, Hardware and control, Evaluation methods, Clinical experience, Orthotics and prosthetics, Robotics for older adults, Service robotics, Movement physiology and motor control.
""Taking Care of Barbara" is an inspirational resource book for
anyone living in the world of Alzheimer's. There are clear and
concise caregiver tips and references in dealing with the everyday
struggles that come with the progression of the disease. What a
gift to know and be able to anticipate the needs of our loved one
when they may not be able to communicate them. Most importantly,
this book is a celebration of family and the relationship between
the caregiver and the patient. It lifts the caregiver above the
everyday struggles and reminds us of where to find the strength and
joy in the frequent frustrations of the day. It inspires us to love
beyond the external happenings and shows us there lies a deeper and
greater gain that will enrich our spirit. The world of Alzheimer's
may feel overwhelming, but this book encourages caregivers to get
out of bed, put their feet on the floor and face the day with
renewed strength and purpose."
Craving more moments of intentional creative clarity and fun? These inspiring prompt cards are a joyful reminder to slow down, be mindful and embrace the random beauty and synchronicity in the everyday. Portable, interactive, multi-purpose, calming and playful, the 106 collectible cards are a simple way to connect to our senses, ourselves and the world around us. Each unique card has a colourful iconic @5ftinf image on one side and an inspiring conscious creativity prompt on the other. Pick a card, tune into the prompt, and take the time to reflect. You can also play an iconic game (happy families or snap, anyone?) and a visual quiz - or even make up one of your own - or simply feel inspired by the images to find yourself in a meditative state of creative flow. Prompts are paired with beautiful images, and examples include: Embrace imperfection Revive and rediscover a scent memory Find some liminal space Find your opposite in nature Take these beautiful Conscious Creativity Cards and booklet with you to tap into your intuition, open up your creative pathways and spark your personal creativity. Discover even more ways to mindfully explore your creativity with: Conscious Creativity (2018) and Conscious Creativity: The Workbook (2020).
This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion. It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples. This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, human-machine interaction, among others.
|
You may like...
Basic Community Health Nursing
K.G. Setswe, M Naude, …
Paperback
(1)
Juta's Complete Textbook Of Medical…
J.D. Mokoena, M. Chauke, …
Paperback
(2)
Primary Care Psychiatry - A Practical…
Sean Exner Baumann
Paperback
(1)
Juta's manual of nursing: Volume 2 - The…
S.M. Mogotlane, I.M. Manaka Mkwanazi, …
Paperback
Bates' Guide To Physical Examination and…
Lynn S. Bickley, Peter G Szilagyi, …
Hardcover
R1,574
Discovery Miles 15 740
Mental Health Nursing - A South African…
Lyn Middleton
Paperback
(2)
|