Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Optics (light)
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: "Where does transformation electromagnetics come from?," "What are the general material properties for different classes of coordinate transformations?," "What are the limitations and challenges of device realizations?," and "What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?" The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
This book introduces readers to the cutting-edge topic of nanophotonic photochemical reactions and their applications. From among the various innovations in optical technology achieved by means of the non-uniform optical near field, it focuses on photochemical reactions at the nanoscale. Optical near fields are the elementary surface excitations of nanometric particles with non-uniform field distributions. After reviewing the unique properties of the non-uniform optical field, the book presents a range of applications of near-field assisted photochemical reactions, including near-field etching, visible water splitting, carbon dioxide reduction and reactions in solar cells.
This book describes in detail the relationship between radiometry and photometry. It covers information needed to solve problems in radiation transfer and detection, detectors, measuring instruments, and concepts in colorimetry.
"Advances in One-Dimensional Wave Mechanics" provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics. Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research.
Three dimensional (3D) optical geometries are becoming more common
in the literature and lexicon of solar cells. "Three Dimensional
Solar Cells Based on Optical Confinement Geometries" describes and
reveals the basic operational nuances of 3D photovoltaics using
three standard tools: Equivalent Circuit Models, Ray Tracing Optics
in the Cavity, and Absorber Spectral Response. These tools aide in
understanding experimental absorption profile and device parameters
including Jsc, Voc, Fill Factor, and EQE. These methods also apply
to individual optical confinement geometry device, integrated
optical confinement geometry device, and hybrid optical confinement
geometry device.
Hardbound. It is a pleasure to record that Progress in Optics is commencing the fifth decade of its existence. The first volume was published in 1961, only a few months after the invention of the laser. This event triggered a wealth of new and exciting developments, many of which were reported in the 240 review articles which were published in this series since its inception. The present volume contains seven articles covering a wide range of subjects. The first article, by M.H. Fields, J. Popp, and R.K. Chang, presents a review of various optical effects in spherical and circular micro-cavities capable of supporting high-Q resonant modes (commonly referred to as morphology-dependent resonances (MDRs) or whispering gallery modes (WGMs)). The article treats the theory of symmetrical and deformed micro-cavities and describes recent research and development in the areas of quantum electrodynamics, lasers, optical spectroscopy, and filters for
This thesis focuses on the fundamental problem of characterising partially coherent beams. The book describes several non-interferometric methods based on phase-space tomography for recovering the spatial coherence information of optical beams. In the context of optical beams, partially coherent light provides numerous advantages over coherent light. From microscopy to optical communications, there are many disciplines that benefit from using partially coherent beams. However, their range of applications currently remains limited due to the complexity of extracting information. In addition to providing a feasible experimental solution for the general case, the book explores several situations in which beam symmetries are exploited to simplify the information extraction process. Each characterisation method is accompanied by a corresponding theoretical explanation and a thorough description of experimental examples.
Coherent quantum optics and technology can be defined as the investigation of the principles of and methods for generating a very smooth lightwave with low fluctuations, controlling and manipulating atoms and photons and their application systems. Generation of nonclassical photons by this lightwave is also part of this area. Chapter 1 provides the reader with the definition of the coherent state of light. Chapter 2 is devoted to the principle of laser oscillation described by using the density matrix method. Chapter 3 reviews the structures and performances of representative lasers, that is gas, dye, solid-state, and semiconductor lasers. Chapter 4 defines the measures of representing the magnitude of noises and the specific noises in lasers. Chapter 5 treats the general ideas and methods of the principle of reducing the frequency fluctuations of lasers and their experimental results. Chapter 7 demonstrates several advanced lightwave application systems for communications, sensing, spectroscopy, atomic clock, quantum optics, atomic physics and test of the theory of relativity. For future progress of this field of research, Chapter 8 introduces several novel ideas for expanding the laser oscilation wavelength range, the generation of nonclassical photons, the manipulation of atoms and photons, and photonic energy storage. Chapters 1-5 form a tutorial textbook for undergraduate students, graduate students, and junior engineers. Chapters 6-8 introduce the topics which are still progressing rapidly.
Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.
This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.
Produced by an award-winning translator of Henri Poincare, this book contains translations of several seminal articles by Poincare and discusses the experimental and theoretical investigations of electrons that form their context. In the 1950s, a dispute ignited about the origin of the theory of special relativity and thrust considerable notoriety on a paper written by Henri Poincare in 1905. Accordingly, Part I presents the relevant translations of Poincare's work showing that radiation carries momentum and the covariance of the equations of electrodynamics, the continuity equation for charge, and the spacetime interval. Part II then discusses investigations by Thomson, Becquerel, and Kaufmann of electrons in diverse contexts; contributions of Abraham, Lorentz and Poincare to a theory of electrons that includes Lorentz transformations and explains the dependence of mass on velocity; and finally, Poincare's exploration of the relativity principle, electron stability, and gravitation while rejecting absolute motion (ether) and an electromagnetic origin of mass. Part III contains the 1904 article by H. A. Lorentz presenting his transformations.This book will be a fascinating read to graduate-level students, physicists, and science historians who are interested in the development of electrodynamics and the classical, relativistic theory of electrons at the beginning of the 20th century.
This book presents a new system of solar cells. Colloidal nanocrystals possess many physical and chemical properties which can be manipulated by advanced control over structural features like the particle size. One application field is photovoltaics where colloidal semiconductor nanocrystals are explored as components of photo-active layers which can be produced from liquid media, often in combination with conductive polymers. The further development of this interdisciplinary field of research requires a deep understanding of the physics and chemistry of colloidal nanocrystals, conducting polymers and photovoltaic devices. This book aims at bridging gaps between the involved scientific disciplines and presents important fundamentals and the current state of research of relevant materials and different types of nanoparticle-based solar cells. The book will be of interest to researchers and PhD students. Moreover, it may also serve to accompany specialized lectures in related areas.
This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.
This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book. As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers.
Semiconductor quantum optics is on the verge of moving from the lab to real world applications. When stepping from basic research to new technologies, device engineers will need new simulation tools for the design and optimization of quantum light sources, which combine classical device physics with cavity quantum electrodynamics. This thesis aims to provide a holistic description of single-photon emitting diodes by bridging the gap between microscopic and macroscopic modeling approaches. The central result is a novel hybrid quantum-classical model system that self-consistently couples semi-classical carrier transport theory with open quantum many-body systems. This allows for a comprehensive description of quantum light emitting diodes on multiple scales: It enables the calculation of the quantum optical figures of merit together with the simulation of the spatially resolved current flow in complex, multi-dimensional semiconductor device geometries out of one box. The hybrid system is shown to be consistent with fundamental laws of (non-)equilibrium thermodynamics and is demonstrated by numerical simulations of realistic devices.
This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.
With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.
William Gascoigne (c.1612-44) was the inventor of the telescopic sight and micrometer (instruments crucial to the advance of astronomy). His name is now known to historians of science around the world. For some considerable time after his tragic death at the age of 32 in the English Civil War, however, it seemed as if his achievements would be consigned to oblivion. Most of his papers were lost and even the few that survived have largely disappeared. This is the story of how his work was rescued. Into this story is woven an account of the state of astronomy and optics during Gascoigne's lifetime, so that the reader can appreciate the significance of his discoveries.
This book introduces the optical multi-band polarization imaging theory and the utilization of the multi-band polarimetric information for detecting the camouflage object and the optical hidden marker, and enhancing the visibility in bad weather and water. The book describes systematically and in detail the basic optical polarimetry theory; provides abundant multi-band polarimetric imaging experiment data; and indicates practical evaluation methods for designing the multi-band polarization imager, for analyzing and modeling the object's multi-band polarization characteristics, and for enhancing the vision performance in scattering media. This book shows the latest research results of multi-band polarimetric vision, especially in camouflage object detection, optical hidden marker detection and multi-band polarimetric imagery fusion. From this book, readers can get a complete understanding about multi-band polarimetric imaging and its application in different vision tasks.
This book mainly focuses on the study of steering electromagnetic fields in near-field and far-field contexts involving plasmonic structures. It also offers a new approach to achieving full control of optical polarizations and potentially boosting the development in photonic information processing. A new in-plane phase modulation method is proposed and described, by means of which a series of optical beams were realized with nanostructures in metal surfaces, such as a plasmonic Airy beam, broad band focusing beam, and demultiplexing, collimated beam, as well as an optical orbital angular momentum (OAM) beam. Further, the book presents a plasmonic polarization generator, which can reconfigure an input polarization to all kinds of states simultaneously.
This book addresses perovskite quantum dots, discussing their unique properties, synthesis, and applications in nanoscale optoelectronic and photonic devices, as well as the challenges and possible solutions in the context of device design and the prospects for commercial applications. It particularly focuses on the luminescent properties, which differ from those of the corresponding quantum dots materials, such as multicolor emission, fluorescence narrowing, and tunable and switchable emissions from doped nanostructures. The book first describes the characterization and fabrication of perovskite quantum dots. It also provides detailed methods for analyzing the electrical and optical properties, and demonstrates promising applications of perovskite quantum dots. Furthermore, it presents a series of optoelectronic and photonic devices based on functional perovskite quantum dots, and explains the incorporation of perovskite quantum dots in semiconductor devices and their effect of the performance. It also explores the challenges related to optoelectronic devices, as well as possible strategies to promote their commercialization. As such, this book is a valuable resource for graduate students and researchers in the field of solid-state materials and electronics wanting to gain a better understanding of the characteristics of quantum dots, and the fundamental optoelectronic properties and operation mechanisms of the latest perovskite quantum dot-based devices.
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.
This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book. |
You may like...
Atlas of the Munsell Color System
A H (Albert Henry) 1858-1 Munsell
Hardcover
R683
Discovery Miles 6 830
The Astrophysical Journal; 11
American Astronomical Society, University of Chicago
Hardcover
R991
Discovery Miles 9 910
Analytical Lens Design, Second Edition
Rafael G. Gonzalez-Acuna
Hardcover
R3,230
Discovery Miles 32 300
Ophthalmic Lenses and Accessories…
Bausch & Lomb Optical Company
Hardcover
R792
Discovery Miles 7 920
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,251
Discovery Miles 42 510
Optical Models for Material Appearance
Mathieu Hebert
Paperback
|