![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
"Advances in Atomic, Molecular, and Optical Physics" publishes
reviews of recent developments in a field that is in a state of
rapid growth, as new experimental and theoretical techniques are
used on many old and new problems. Topics covered include related
applied areas, such as atmospheric science, astrophysics, surface
physics and laser physics. Articles are written by distinguished
experts and contain relevant review material and detailed
descriptions of important recent developments.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
William Gascoigne (c.1612-44) was the inventor of the telescopic sight and micrometer (instruments crucial to the advance of astronomy). His name is now known to historians of science around the world. For some considerable time after his tragic death at the age of 32 in the English Civil War, however, it seemed as if his achievements would be consigned to oblivion. Most of his papers were lost and even the few that survived have largely disappeared. This is the story of how his work was rescued. Into this story is woven an account of the state of astronomy and optics during Gascoigne's lifetime, so that the reader can appreciate the significance of his discoveries.
This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.
This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.
Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.
This thesis deals with the dynamics of state-of-the-art nanophotonic semiconductor structures, providing essential information on fundamental aspects of nonlinear dynamical systems on the one hand, and technological applications in modern telecommunication on the other. Three different complex laser structures are considered in detail: (i) a quantum-dot-based semiconductor laser under optical injection from a master laser, (ii) a quantum-dot laser with optical feedback from an external resonator, and (iii) a passively mode-locked quantum-well semiconductor laser with saturable absorber under optical feedback from an external resonator. Using a broad spectrum of methods, both numerical and analytical, this work achieves new fundamental insights into the interplay of microscopically based nonlinear laser dynamics and optical perturbations by delayed feedback and injection.
This book focuses on advanced optical finishing techniques and design for high-performance manufacturing systems. It provides numerous detailed examples of how advanced automation techniques have been applied to optical fabrication processes. The simulations, removal rate and accurate experimental results offer useful resources for engineering practice. Researchers, engineers and graduate students working in optical engineering and precision manufacture engineering will benefit from this book.
This book mainly focuses on the study of steering electromagnetic fields in near-field and far-field contexts involving plasmonic structures. It also offers a new approach to achieving full control of optical polarizations and potentially boosting the development in photonic information processing. A new in-plane phase modulation method is proposed and described, by means of which a series of optical beams were realized with nanostructures in metal surfaces, such as a plasmonic Airy beam, broad band focusing beam, and demultiplexing, collimated beam, as well as an optical orbital angular momentum (OAM) beam. Further, the book presents a plasmonic polarization generator, which can reconfigure an input polarization to all kinds of states simultaneously.
This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book.
This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. The book collects the results obtained in the last years by world scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art and also a view to future applications of those engineered and used materials in the field of photonics. The second edition covers the major aspects of ferroelectric domain engineering and combines basic research and latest updated applications such as challenging results by introducing either new as well as extended chapters on Photonics Crystals based on Lithium Niobate and Lithium Tantalate crystals; generation, visualization and controlling of THz radiation; latest achievements on Optical Parametric Oscillators for application in precise spectroscopy. Further more recent advancements in characterization by probe scanning microscopy and optical methods with device and technological orientation. A state-of-the-art report on periodically poled processes and their characterization methods are provided on different materials (LiNbO3, KTP) furnishing update research on ferroelectric crystal by extending materials research and applications.
This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book. As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers.
This book introduces the optical multi-band polarization imaging theory and the utilization of the multi-band polarimetric information for detecting the camouflage object and the optical hidden marker, and enhancing the visibility in bad weather and water. The book describes systematically and in detail the basic optical polarimetry theory; provides abundant multi-band polarimetric imaging experiment data; and indicates practical evaluation methods for designing the multi-band polarization imager, for analyzing and modeling the object's multi-band polarization characteristics, and for enhancing the vision performance in scattering media. This book shows the latest research results of multi-band polarimetric vision, especially in camouflage object detection, optical hidden marker detection and multi-band polarimetric imagery fusion. From this book, readers can get a complete understanding about multi-band polarimetric imaging and its application in different vision tasks.
This book offers a comprehensive introduction to confocal microscopy - with a particular focus on spectral confocal microscopy. Beginning with an introduction to optical lenses, it provides a guide to compound microscopes and explains related topics like microscopic resolution. It then presents an outline of fluorescence and its corresponding implications for microscopy. The following excursus on the confocal beam paths includes implementation of acousto-optical devices and modern sensor techniques. Complex relationships are explained in a comprehensible manner, supported by many graphical figures. Discussing the principles of magnifying optics and the technical fundamentals and modes of operation of modern laser scanning microscopes, it is a valuable resource for student and lab technicians as well as faculty members.
This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.
This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.
The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrom regime. The appendices contain supplementary material and more involved calculations."
This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.
Terahertz science and technology is attracting great interest due to its application in a wide array of fields made possible by the development of new and improved terahertz radiation sources and detectors. This book focuses on the development and characterization of one such source - namely the semi-large aperture photoconducting (PC) antenna fabricated on Fe-doped bulk Ga0.69In0.31As substrate. The high ultrafast carrier mobility, high resistivity, and subpicosecond carrier lifetime along with low bandgap make Ga0.69In0.31As an excellent candidate for PC antenna based THz emitter that can be photoexcited by compact Yb-based multiwatt laser systems for high power THz emission. The research is aimed at evaluating the impact of physical properties of a semi-large aperture Ga0.69In0.31As PC antenna upon its THz generation efficiency, and is motivated by the ultimate goal of developing a high-power terahertz radiation source for time-domain terahertz spectroscopy and imaging systems.
This is a guide to the physics and engineering of semiconductor lasers - from basic physics to modern design applications for optical communications and photonic switching. It offers descriptions of bistability, ultrashort optical pulse generation and the two-section laser diode. The text is aimed at engineers and system designers in the fields of communication, switching, measurement systems and information processing. It should also be useful for scientists and engineers studying laser diodes; and for graduate students in electronics and electrical engineering.
This thesis introduces a series of novel, non-conjugated polyarylether hosts that are not subject to the triplet-energy limitations of traditional conjugated polymer hosts. As a result of this major breakthrough, the long-standing problem of triplet energy back transfer has now been overcome, making it possible to design high-efficiency electrophosphorescent polymers (PhPs), especially the blue and all-phosphorescent white ones. In addition, the author proposes a spiro-linked hyperbranched architecture for PhPs to inhibit the undesired triplet energy back transfer process in low triplet-energy hosts. The work in this thesis provides vital new insights into the design of PhPs and has led to several publications in high-profile journals.
This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber limited bandwidth problem can be decreased by using multilevel signaling like multilevel pulse amplitude modulation or by using an equalizer for binary data transmission. |
You may like...
Are We Free? - Psychology and Free Will
John Baer, James C Kaufman, …
Hardcover
R1,651
Discovery Miles 16 510
Communication - An Arena of Development
Nancy Budwig, Ina C. Uzgiris, …
Hardcover
Computer Vision: Specialized Processors…
Eduard Montseny, Joan Frau
Hardcover
R2,749
Discovery Miles 27 490
|