![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.
This book, the first of a two-volume set, focuses on the basic physical principles of blackbody radiometry and describes artificial sources of blackbody radiation, widely used as sources of optical radiation, whose energy characteristics can be calculated on the base of fundamental physical laws. Following a review of radiometric quantities, radiation laws, and radiative heat transfer, it introduces the basic principles of blackbody radiators design, details of their practical implementation, and methods of measuring their defining characteristics, as well as metrological aspects of blackbody-based measurements. Chapters are dedicated to the effective emissivity concept, methods of increasing effective emissivities, their measurement and modeling using the Monte Carlo method, techniques of blackbody radiators heating, cooling, isothermalization, and measuring their temperature. An extensive and comprehensive reference source, this book is of considerable value to students, researchers, and engineers involved in any aspect of blackbody radiometry.
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation. In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability.
This book gathers selected and expanded contributions presented at the 5th Symposium on Space Optical Instruments and Applications, which was held in Beijing, China, on September 5-7, 2018. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications.
In the forty-eight years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
Light scattering from particles in the nanometric and micrometric size range is relevant in several research fields, such as aerosol science and nanotechnology. In many applications, the description of the optical properties of non-spherical, inhomogeneous particles is still inadequate or requires demanding numerical calculations. Lorenz-Mie scattering and effective medium approximations represent currently the main theoretical tools to model such particles, but their effectiveness has been recently called into question. This work examines how the morphology of a particle affects its scattering parameters from an experimental standpoint, supporting findings with extensive simulations. The dust content of Antarctic, Greenlandic, and Alpine ice cores is analysed with a particle-by-particle approach. Moreover, a study on colloidal aggregates shows that correlations among the fields radiated by primary particles are responsible for the poor agreement of effective medium approximations with experimental results. On the theoretical side, an interpretation in terms of the structure factor is given, which satisfactorily describes the data. The insights of this thesis are relevant for quantifying the contribution of mineral dust to the radiative energy balance of the Earth.
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers' understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.
In the fourty-seven years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
This book presents recent outcomes of the collaborative "Tricorder" project, which brings together partners from industry, research institutes and hospitals to deliver an easy contactless alternative for electrocardiograms (ECG). Featuring contributions investigating the possible applications of laser Doppler vibrometry (LDV) signals for the remote measurement of vital parameters of the heart, the book provides insights into the vision and the history of the "Tricorder" project and the basic differences between the vibrocardiograms and electrocardiograms. It also discusses topics such as signal processing, heartbeat measurement techniques, respiration frequency and oxygen saturation determination, with a particular focus on the diagnostic value of the method presented, e.g., diagnosis of atrial fibrillation and estimation of the oxygen saturation in premature infants. Further, the authors review the advantages and drawbacks of the new method and the specific fields of application. This book will appeal to researchers and industry leaders interested in laser remote sensing for medical applications as well as medical professionals curious about new healthcare technologies.
This book reviews basic electromagnetic (EM) wave theory and applies it specifically to lasers in order to give the reader not only tangible examples of how the theory is manifested in real life, but also practical knowledge about lasers, and their operation and usage. The latter can be useful for those involved with using lasers. As a short treatise on this subject matter, this book is not intended to dwell deeply into the details of EM waves nor lasers. A bibliography is provided for those who wish to explore in more depth the topics covered in this book. Rather the aim of this book is to offer a quick overview, which will allow the reader to gain a competent general understanding of EM waves and lasers.
This book provides wide-ranging coverage of current developments in biomedical sensing based on photonic techniques. Biomedical sensing is a dynamic topic that promises to deliver much in the future evolution of medical diagnostics, delivering advanced tools for fundamental research in biology at the micrometre and nanometre scales. The book explores a variety of alternative physical and biological methodologies that have become available for application, such as plasmonic sensors and photonic crystal biosensors. At the same time, it addresses issues that potentially limit the capability of biomedical optical sensing techniques, while reviewing the state-of-the-art in biomedical optical sensing for the future work that will lead to near-universal applications of such techniques. Edited and written by leading experts in this domain, this book is ideal as a comprehensive manual for researchers and graduate students.
This book highlights the synthesis/fabrication of novel materials for different kinds of optical applications. It covers all aspects of optical applications starting from LED/Lasers, SERS, bio-sensing, bio-imaging and non-linear optical applications such as optical limiting, saturable absorbers etc. The book describes the development of novel materials and geometry as well as engineering of their size and shape for harvesting better optical properties. Nonconventional plasmonic materials and their fabrication are discussed apart from the conventionally employed noble metal based nanosystems. In addition, development of Novel materials/structures for biosensing /bioimaging /optical limiting are also covered.
This book reviews the spaceborne and airborne remote sensing of clouds including cloud lidar and radar data analysis, snow and soil reflectance spectroscopy, and single light scattering by nonspherical scatterers. Providing deep insights into the latest technologies, it is a valuable resource for scientists and postgraduate students alike.
In the fourty-six years that have gone by since the first volume of
Progress in Optics was published, optics has become one of the most
dynamic fields of science. The volumes in this series which have
appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
This book brings together two broad themes that have generated a great deal of interest and excitement in the scientific and technical community in the last 100 years or so: quantum tunnelling and nonlinear dynamical systems. It applies these themes to nanostructured solid state heterostructures operating at room temperature to gain insight into novel photonic devices, systems and applications.
Ray, wave and quantum concepts are central to diverse and seemingly
incompatible models of light. Each model particularizes a specific
''manifestation'' of light, and then corresponds to adequate
physical assumptions and formal approximations, whose domains of
applicability are well-established. Accordingly each model
comprises its own set of geometric and dynamic postulates with the
pertinent mathematical means.
This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light-matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light-matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.
The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: * excitation of electromagnetic waves in volumes with coordinate boundaries;* general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;* solution of current equations for isolated vibrator and slot scatterers;* combined radiating vibrator-slot structures in rectangular waveguide;* T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;* waveguide radiation of the combined vibrator-slot structures;* combined vibrator-slot structures located on a perfectly conducting sphere;* combined vibrator-slot Radiators in antenna arrays;* ultrawideband vibrator-slot structures;
This book provides a comprehensive survey of the technology of flash lamp annealing (FLA) for thermal processing of semiconductors. It gives a detailed introduction to the FLA technology and its physical background. Advantages, drawbacks and process issues are addressed in detail and allow the reader to properly plan and perform their own thermal processing. Moreover, this books gives a broad overview of the applications of flash lamp annealing, including a comprehensive literature survey. Several case studies of simulated temperature profiles in real material systems give the reader the necessary insight into the underlying physics and simulations. This book is a valuable reference work for both novice and advanced users.
Volume 54 of the Advances Series contains ten contributions,
covering a diversity of subject areas in atomic, molecular and
optical physics. The article by Regal and Jin reviews the
properties of a Fermi degenerate gas of cold potassium atoms in the
crossover regime between the Bose-Einstein condensation of
molecules and the condensation of fermionic atom pairs. The
transition between the two regions can be probed by varying an
external magnetic field. Sherson, Julsgaard and Polzik explore the
manner in which light and atoms can be entangled, with applications
to quantum information processing and communication. They report on
the result of recent experiments involving the entanglement of
distant objects and quantum memory of light. Recent developments in
cold Rydberg atom physics are reviewed in the article by Choi,
Kaufmann, Cubel-Liebisch, Reinhard, and Raithel. Fascinating
experiments are described in which cold, highly excited atoms
(???Rydberg??? atoms) and cold plasmas are generated. Evidence for
a collective excitation of Rydberg matter is also presented.
Griffiin and Pindzola offer an account of non-perturbative quantal
methods for electron-atom scattering processes. Included in the
discussion are the R-matrix with pseudo-states method and the
time-dependent close-coupling method. An extensive review of the
R-matrix theory of atomic, molecular, and optical processes is
given by Burke, Noble, and Burke. They present a systematic
development of the R-matrix method and its applications to various
processes such as electron-atom scattering, atomic photoionization,
electron-molecule scattering, positron-atom scattering, and
atomic/molecular multiphoton processes. Electron impactexcitation
of rare-gas atoms from both their ground and metastable states is
discussed in the article by Boffard, Jung, Anderson, and Lin.
Excitation cross sections measured by the optical method are
reviewed with emphasis on the physical interpretation in terms of
electronic structure of the target atoms. Ozier and Moazzen-Ahmadi
explore internal rotation of symmetric top molecules. Developments
of new experimental methods based on high-resolution torsional,
vibrational, and molecular beam spectroscopy allow accurate
determination of internal barriers for these symmetric molecules.
The subject of attosecond and angstrom science is reviewed by
Niikura and Corkum. The underlying physical mechanisms allowing one
to generate attosecond radiation pulses are described and the
technology needed for the preparation of such pulses is discussed.
LeGou??t, Bretenaker, and Lorger?? describe how rare earth ions
embedded in crystals can be used for processing optically carried
broadband radio-frequency signals. Methods for reaching tens of
gigahertz instantaneous bandwidth with submegahertz resolution
using such devices are analyzed in detail and demonstrated
experimentally. Finally, in the article by Illing, Gauthier, and
Roy, it is shown that small perturbations applied to optical
systems can be used to suppress or control optical chaos,
spatio-temporal dynamics, and patterns. Applications of these
techniques to communications, laser stabilization, and improving
the sensitivity of low-light optical switches are explored.
Ultrashort Laser Pulse Phenomena serves as an introduction to the
phenomena of ultrashort laser pulses and describes how this
technology can be applied in areas such as spectroscopy, medical
imaging, electromagnetism, optics, and quantum physics. Combining
the principles with experimental techniques, the book serves as a
guide to designing and constructing femtosecond systems.
This book offers an introduction to the booming field of high-power laser-matter interaction. It covers the heating of matter to super-high temperatures and pressures, novel schemes of fast particle acceleration, matter far from thermal equilibrium, stimulated radiation scattering, relativistic optics, strong field QED, as well as relevant applications, such as extreme states of matter, controlled fusion, and novel radiation sources. All models and methods considered are introduced as they arise and illustrated by relevant examples. Each chapter contains a selection of problems to test the reader's understanding, to apply the models under discussion to relevant situations and to discover their limits of validity. The carefully chosen illustrations greatly facilitate the visualization of physical processes as well as presenting detailed numerical results. A list of useful formulas and tables are provided as a guide to quantifying results from experiments and numerical simulations. Each chapter ends with a description of the state of the art and the current research frontiers.
How do you protect electrical systems from high energy electromagnetic pulses? This book is designed for researchers who wish to design toughned systems against EMPs from high altitude sources. It discusses numerous factors affecting the strength of EMPs as well as their impact on electronic components, devices and power electrical equipment. This book includes practical protection methods and means for evaluating their effectiveness. |
![]() ![]() You may like...
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,374
Discovery Miles 53 740
Epitaxial Growth of Complex Metal Oxides
Gertjan Koster, Mark Huijben, …
Paperback
R6,556
Discovery Miles 65 560
Open-Channel Microfluidics…
Jean Berthier, Ashleigh B. Theberge, …
Hardcover
R2,364
Discovery Miles 23 640
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
|