|
Books > Science & Mathematics > Physics > Optics (light)
 |
Applications
(Hardcover)
Alfred J. Meixner, Monika Fleischer, Dieter P. Kern, Evgeniya Sheremet, Norman McMillan
|
R3,521
R2,767
Discovery Miles 27 670
Save R754 (21%)
|
Ships in 10 - 15 working days
|
|
Nanospectroscopy addresses the spectroscopy of very small objects
down to single molecules or atoms, or high-resolution spectroscopy
performed on regions much smaller than the wavelength of light,
revealing their local optical, electronic and chemical properties.
This work highlights modern examples where optical nanospectroscopy
is exploited in photonics, optical sensing, medicine, or
state-of-the-art applications in material, chemical and biological
sciences. Examples include the use of nanospectroscopy in such
varied fields as quantum emitters, dyes and two-dimensional
materials, on solar cells, radiation imaging detectors, biosensors
and sensors for explosives, in biomolecular and cancer detection,
food science, and cultural heritage studies.
This book uses art photography as a point of departure for learning
about physics, while also using physics as a point of departure for
asking fundamental questions about the nature of photography as an
art. Although not a how-to manual, the topics center around
hands-on applications, sometimes illustrated by photographic
processes that are inexpensive and easily accessible to students
(including a versatile new process developed by the author, and
first described in print in this series). A central theme is the
connection between the physical interaction of light and matter on
the one hand, and the artistry of the photographic processes and
their results on the other. This is the third volume in this
three-part series that uses art photography as a point of departure
for learning about physics, while also using physics as a point of
departure for asking fundamental questions about the nature of
photography as an art. It focuses on the physics and chemistry of
photographic light-sensitive materials, as well as the human
retina. It also considers the fundamental nature of digital
photography and its relationship to the analog photography that
preceded it.
Optical properties, particularly in the infrared range of
wavelengths, continue to be of enormous interest to both material
scientists and device engineers. The need for the development of
standards for data of optical properties in the infrared range of
wavelengths is very timely considering the on-going transition of
nano-technology from fundamental R&D to manufacturing.
Radiative properties play a critical role in the processing,
process control and manufacturing of semiconductor materials,
devices, circuits and systems. The design and implementation of
real-time process control methods in manufacturing requires the
knowledge of the radiative properties of materials. Sensors and
imagers operate on the basis of the radiative properties of
materials. This book reviews the optical properties of various
semiconductors in the infrared range of wavelengths. Theoretical
and experimental studies of the radiative properties of
semiconductors are presented. Previous studies, potential
applications and future developments are outlined. In Chapter 1, an
introduction to the radiative properties is presented. Examples of
instrumentation for measurements of the radiative properties is
described in Chapter 2. In Chapters 3-11, case studies of the
radiative properties of several semiconductors are elucidated. The
modeling and applications of these properties are explained in
Chapters 12 and 13, respectively. In Chapter 14, examples of the
global infrastructure for these measurements are illustrated.
Optics has been part of scientific enquiry from its beginning and
remains a key element of modern science. This book provides a
concise treatment of physical optics starting with a brief summary
of geometrical optics. Scalar diffraction theory is introduced to
describe wave propagation and diffraction effects and provides the
basis for Fourier methods for treating more complex diffraction
problems. The rest of the book treats the physics underlying some
important instruments for spectral analysis and optical metrology,
reflection and transmission at dielectric surfaces and the
polarization of light. This undergraduate-level text aims to aid
understanding of optical applications in physical, engineering and
life sciences or more advanced topics in modern optics.
Since the initial predictions for the existence of Weyl fermions in
condensed matter, many different experimental techniques have
confirmed the existence of Weyl semimetals. Among these techniques,
optical responses have shown a variety of effects associated with
the existence of Weyl fermions. In chiral crystals, we find a new
type of fermions protected by crystal symmetries — the chiral
multifold fermions — that can be understood as a higher-spin
generalization of Weyl fermions. This work provides a complete
description of all chiral multifold fermions, studying their
topological properties and the k·p models describing them. We
compute the optical conductivity of all chiral multifold fermions
and establish their optical selection rules. We find that the
activation frequencies are different for each type of multifold
fermion, thus constituting an experimental fingerprint for each
type of multifold fermion. Building on the theoretical results
obtained in the first part of our analysis, we study two chiral
multifold semimetals: RhSi and CoSi. We analyze the experimental
results with k·p and tight-binding models based on the crystal
symmetries of the material. We trace back the features observed in
the experimental optical conductivity to the existence of multifold
fermions near the Fermi level and estimate the chemical potential
and the scattering lifetime in both materials. Finally, we provide
an overview of second-order optical responses and study the
second-harmonic generation of RhSi. We find a sizeable
second-harmonic response in the low-energy regime associated with
optical transitions between topological bands. However, this regime
is extremely challenging to access with the current experimental
techniques. We conclude by providing an overview of the main
results, highlighting potential avenues to further research on
chiral multifold semimetals and the future of optical responses as
experimental probes to characterize topological phases.
Electron storage rings play a crucial role in many areas of modern
scientific research. In light sources, they provide intense beams
of x-rays that can be used to understand the structure and behavior
of materials at the atomic scale, with applications to medicine,
the life sciences, condensed matter physics, engineering, and
technology. In particle colliders, electron storage rings allow
experiments that probe the laws of nature at the most fundamental
level. Understanding and controlling the behavior of the beams of
particles in storage rings is essential for the design,
construction, and operation of light sources and colliders aimed at
reaching increasingly demanding performance specifications.
Introduction to Beam Dynamics in High-Energy Electron Storage Rings
describes the physics of particle behavior in these machines.
Starting with an outline of the history, uses, and structure of
electron storage rings, the book develops the foundations of beam
dynamics, covering particle motion in the components used to guide
and focus the beams, the effects of synchrotron radiation, and the
impact of interactions between the particles in the beams. The aim
is to emphasize the physics behind key phenomena, keeping
mathematical derivations to a minimum: numerous references are
provided for those interested in learning more. The text includes
discussion of issues relevant to machine design and operation and
concludes with a brief discussion of some more advanced topics,
relevant in some special situations, and a glimpse of current
research aiming to develop the "ultimate" storage rings.
Advances in Imaging and Electron Physics, Volume 212, merges two
long-running serials, Advances in Electronics and Electron Physics
and Advances in Optical and Electron Microscopy. The series
features extended articles on the physics of electron devices
(especially semiconductor devices), particle optics at high and low
energies, microlithography, image science, digital image
processing, electromagnetic wave propagation, electron microscopy
and the computing methods used in all these domains.
Advances in Atomic, Molecular, and Optical Physics, Volume 71
provides a comprehensive compilation of recent developments in a
field that is in a state of rapid growth as new experimental and
theoretical techniques are used on many problems, both old and new.
Topics covered include related applied areas, such as atmospheric
science, astrophysics, surface physics, and laser physics, with
timely articles written by distinguished experts. Sample content
covered in this release includes Attosecond generation and
application from X-ray Free Electron Lasers.
This book delivers a comprehensive and up-to-date treatment of
practical applications of metamaterials, structured media, and
conventional porous materials. With increasing levels of
urbanization, a growing demand for motorized transport, and
inefficient urban planning, environmental noise exposure is rapidly
becoming a pressing societal and health concern. Phononic and sonic
crystals, acoustic metamaterials, and metasurfaces can
revolutionize noise and vibration control and, in many cases,
replace traditional porous materials for these applications. In
this collection of contributed chapters, a group of international
researchers reviews the essentials of acoustic wave propagation in
metamaterials and porous absorbers with viscothermal losses, as
well as the most recent advances in the design of acoustic
metamaterial absorbers. The book features a detailed theoretical
introduction describing commonly used modelling techniques such as
plane wave expansion, multiple scattering theory, and the transfer
matrix method. The following chapters give a detailed consideration
of acoustic wave propagation in viscothermal fluids and porous
media, and the extension of this theory to non-local models for
fluid saturated metamaterials, along with a description of the
relevant numerical methods. Finally, the book reviews a range of
practical industrial applications, making it especially attractive
as a white book targeted at the building, automotive, and
aeronautic industries.
This book explicates the optical controls of antiferromagnetic
spins by intense terahertz (THz) electromagnetic waves. The book
comprises two key components: (1) the experimental demonstration of
the enhancement of a THz magnetic field using a split-ring
resonator (SRR) and (2) the control of the direction of
magnetization by using the enhanced THz magnetic field to break the
symmetry of optically-induced phase transition. These make up the
first step leading to future spintronics devices. In the beginning
of the book, the author reviews the basics of the ultrafast laser
and nonlinear optical techniques as well as the previously achieved
experiments to control spin dynamics by THz magnetic fields. In
this context, a new experimental protocol is described, in which
electron spins in a ferromagnetic material are redirected at the
unprecedented level in cooperation with the enhanced THz magnetic
field. Subsequently, the author demonstrates that the THz magnetic
field is significantly amplified as a nearfield around the SRR
structured metamaterial, which is implemented by measuring spin
precession in a solid. At the end, the author presents the key
experiment in which the amplified THz magnetic nearfield is applied
to the weak ferromagnet ErFeO3 along with the femtosecond
near-infrared pulse, demonstrating the successful control of
symmetry breaking of the spin system due to coherent control of the
optically-induced spin reorientation phase transition pathways. The
comprehensive introductory review in this book allows readers to
overview state-of-the-art terahertz spectroscopic techniques. In
addition, the skillful description of the experiments is highly
informative for readers in ultrafast magnonics, ultrafast optics,
terahertz technology and plasmonic science.
Many physical properties of our universe, such as the relative
strength of the fundamental interactions, the value of the
cosmological constant, etc., appear to be fine-tuned for existence
of human life. One possible explanation of this fine tuning assumes
existence of a multiverse, which consists of a very large number of
individual universes having different physical properties.
Intelligent observers populate only a small subset of these
universes, which are fine-tuned for life. In this book we will
review several interesting metamaterial systems, which capture many
features of important cosmological models and offer insights into
the physics of many other non-trivial spacetime geometries, such as
microscopic black holes, closed time-like curves (CTCs) and the
Alcubierre warp drive.
|
|