Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Optics (light)
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain nearly 190 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.
This book describes a broad research program on quantum communication. Here, a cryptographic key is exchanged by two parties using quantum states of light and the security of the system arises from the fundamental properties of quantum mechanics. The author developed new communication protocols using high-dimensional quantum states so that more than one classical bit is transferred by each photon. This approach helps circumvent some of the non-ideal properties of the experimental system, enabling record key rates on metropolitan distance scales. Another important aspect of the work is the encoding of the key on high-dimensional phase-randomized weak coherent states, combined with so-called decoy states to thwart a class of possible attacks on the system. The experiments are backed up by a rigorous security analysis of the system, which accounts for all known device non-idealities. The author goes on to demonstrate a scalable approach for increasing the dimension of the quantum states, and considers attacks on the system that use optimal quantum cloning techniques. This thesis captures the current state-of-the-art of the field of quantum communication in laboratory systems, and demonstrates that phase-randomized weak coherent states have application beyond quantum communication.
Physics of Strained Quantum Well Lasers provides an extremely detailed, accessible, and clear account of the fundamentals of the subject. This self-contained presentation progresses from strained quantum well bandstructure to device physics. It is specifically tailored to the background and needs of incoming graduate students in electrical engineering and physics, as well as industrial research and development engineers. Only a standard undergraduate knowledge of quantum mechanics, solid state physics, and electromagnetism is required. No prior familiarity with lasers is needed. The first chapter of Physics of Strained Quantum Well Lasers is a mini-course on advanced quantum mechanics, and explains the most important techniques. Perturbation methods, both time-independent and time-dependent, are developed in detail, making the rest of the material much easier to understand. In later chapters, particular attention is paid to some of the most challenging and important topics, such as the kA-p theory, the deformation potential theory, the multiband envelope function approximation, field quantization, and the emission and absorption of light in quantum wells. These core topics apply widely, both to quantum well lasers and to other electronic and optoelectronic devices. Physics of Strained Quantum Well Lasers will allow the reader to progress systematically through the text and emerge with enough knowledge to successfully understand and model strained quantum well lasers.
Sizes of electronic and photonic devices are decreasing drastically in order to increase the degree of integration for large-capacity and ultrahigh speed signal transmission and information processing. This miniaturization must be rapidly progressed from now onward. For this progress, the sizes of materials for composing these devices will be also decreased to several nanometers. If such a nanometer-sized material is combined with the photons and/or some other fields, it can exhibit specific characters, which are considerably different from those ofbulky macroscopic systems. This combined system has been called as a mesoscopic system. The first purpose of this book is to study the physics of the mesoscopic system. For this study, it is essential to diagnose the characteristics of miniaturized devices and materials with the spatial resolution as high as several nanometers or even higher. Therefore, novel methods, e.g., scanning probe microscopy, should be developed for such the high-resolution diagnostics. The second purpose of this book is to explore the possibility of developing new methods for these diagnostics by utilizing local interaction between materials and electron, photon, atomic force, and so on. Conformation and structure of the materials of the mesoscopic system can be modified by enhancing the local interaction between the materials and electromagnetic field. This modification can suggest the possibility of novel nano-fabrication methods. The third purpose of this book is to explore the methods for such nano-fabrication."
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techniques. It informs readers on how to achieve the best angular resolution in the visible and near-infrared regimes from diffraction-limited to micro-arcsecond scales.
Presents recent developments in theoretical and experimental research of nanophotonics Discusses properties and features of nanophotonic devices, e.g. scanning near-field optical microscopy, nanofi ber/nanowire based photonic devices Illustrates the most promising nanophotonic devices and instruments and their application Suits well for researchers and graduates in nanophotonics field Contents Scanning near-field optical microscopy Nanofibers/nanowires and their applications in photonic components and devices Micro/nano-optoelectronic devices based on photonic crystal
The Proceedings contain state-of-the-art reviews and original materials related to up-to-date developments in a wide range of optical control methods. They are devoted in particular to shape, displacement and deformation measurement, strain analysis, mechanical behavior evaluation, inspection and non-destructive testing. Three principal classes of methods are under consideration: speckle photography, holographic interferometry and speckle interferometry. Both the state-of-the-art practices and the actual leading-edge techniques are discussed within a single volume, with reference to theoretical backgrounds common to all methods. Usually, similar information is distributed over many specialised works. The book presents both conceptual and practical aspects: theoretical considerations are fully analysed and applications illustrate the emphasis on many experimental aspects.
Basics of Holography is a general introduction to the subject written by a leading worker in the field. It begins with the theory of holographic imaging, the characteristics of the reconstructed image, and the various types of holograms. Practical aspects of holography are then described, including light sources, the characteristics of recording media and recording materials, as well as methods for producing different types of holograms and computer-generated holograms. Finally, important applications of holography are discussed, such as high-resolution imaging, holographic optical elements, information processing, and holographic interferometry.
This book is an introduction to the two closely related subjects of quantum optics and quantum information. The book gives a simple, self-contained introduction to both subjects, while illustrating the physical principles of quantum information processing using quantum optical systems. To make the book accessible to those with backgrounds other than physics, the authors also include a brief review of quantum mechanics. Furthermore, some aspects of quantum information, for example those pertaining to recent experiments on cavity QED and quantum dots, are described here for the first time in book form.
This collection of papers written by leading researchers reflects the forefront of research in the dynamic field of quantum optics. Topics covered include BEC, atomic optics, quantum information, cavity QED and quantum noise processes. This volume forms an indispensable reference source for all those who want to keep up with the latest developments in this area.
The field of optics has been accelerating at an unprecedented rate, due both to the tremendous growth of the field of fiber-optic communications, and to the improvement of optical materials and devices. Throughput capabilities of fiber systems are accelerating faster than Moore's law, the famous growth rate of silicon chip capability, which has propelled that industry relentlessly over decades. In addition, new optical storage techniques push the limits of information density, with an ever decreasing cost per bit of storage. Economic investment in photonics is at an all-time high. At the same time, other fields of optics, adaptive optics for instance, are bringing new capabilities to more classical applications such as astronomical imaging. New lasers continue to be developed, with applications in display, sensing, and biomedicine following at ever-shorter intervals after the initial discoveries. Given this background, the NATO Mediterranean Dialog Advanced Research Workshop on Unconventional Optical Elements for Information Storage, Processing and Communications, held in Israel on October 19-21, 1998, came at an opportune moment in the history of optics. Its aim was to overview the current state-of-the-art and encourage cooperation in the Mediterranean region, with a view to highlighting and enhancing the existing potential for further development and innovation. The workshop included participants from Belgium, France, Germany, Greece, Israel, Italy, Jordan, Morocco, Portugal, Romania, Russia, Switzerland, Turkey, United Kingdom and USA.
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular, and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems. Topics covered also include related applied areas,
such as atmospheric science, astrophysics, surface physics, and
laser physics.
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker--Planck equations. Particular attention is given to the theory of optical bistability formulated in terms of the positive P-representation, and the theory of small bistable systems. This is a textbook at an advanced graduate level. It is intended as a bridge between an introductory discussion of the master equation method and problems of current research.
Photonics concerns the generation, transport, processing and detection of light. It underlies a large amount of industrial activity, mainly devoted to information technology, telecommunications, environmental monitoring, biomedical science and instrumentation. The field has received a powerful impetus recently with the introduction of nanoscale concepts. Moreover, organic materials now appear as key components in photonic devices such as light-emitting diodes, integrated lasers, or photovoltaic cells. Organic molecular systems offer unique opportunities in nanophotonics since both top-down and bottom-up strategies can be pursued towards the nanoscale. This book gathers the proceedings of the NATO advanced research workshop on "Organic Nanophotonics," held in Aix-en-Provence, France, August 25-29, 2002. It constitutes a snapshot of the state of the art in the novel, emerging research area of nanophotonics based on organic molecules and materials.
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several megavolts/cm. This development opens the new research field of nonlinear THz spectroscopy in which strong light-matter interactions are exploited to induce quantum excitations and/or charge transport and follow their nonequilibrium dynamics in time-resolved experiments. This book introduces methods of THz generation and nonlinear THz spectroscopy in a tutorial way, discusses the relevant theoretical concepts, and presents prototypical, experimental, and theoretical results in condensed matter physics. The potential of nonlinear THz spectroscopy is illustrated by recent research, including an overview of the relevant literature.
This book is intended to engage the students in the elegance of electrodynamics and special relativity, whilst giving them the tools to begin graduate study. Here, from the basis of experiment, the authors first derive the Maxwell equations and special relativity. Introducing the mathematical framework of generalized tensors, the laws of mechanics, Lorentz force and the Maxwell equations are then cast in manifestly covariant form. This provides the basis for graduate study in field theory, high energy astrophysics, general relativity and quantum electrodynamics. As the title suggests, this book is "electrodynamics lite". The journey through electrodynamics is kept as brief as possible, with minimal diversion into details, so that the elegance of the theory can be appreciated in a holistic way. It is written in an informal style and has few prerequisites; the derivation of the Maxwell equations and their consequences is dealt with in the first chapter. Chapter 2 is devoted to conservation equations in tensor formulation; here, Cartesian tensors are introduced. Special relativity and its consequences for electrodynamics are introduced in Chapter 3 and cast in four-vector form, and here, the authors introduce generalized tensors. Finally, in Chapter 4, Lorentz frame invariant electrodynamics is developed. Supplementary material and examples are provided by the two sets of problems. The first is revision of undergraduate electromagnetism, to expand on the material in the first chapter. The second is more advanced corresponding to the remaining chapters, and its purpose is twofold: to expand on points that are important, but not essential, to derivation of manifestly covariant electrodynamics, and to provide examples of manipulation of cartesian and generalized tensors. As these problems introduce material not covered in the text, they are accompanied by full worked solutions. The philosophy here is to facilitate learning by problem solving, as well as by studying the text. Extensive appendices for vector relations, unit conversion and so forth are given with graduate study in mind.
This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: * the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; * chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; * the final chapter discusses the environmental polarimetry of man-made objects.
Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.
In this book, the authors give an up-to-date account of thermoluminescence (TL) and other thermally stimulated phenomena. Although most recent experimental results of TL in different materials are described in some detail, the main emphasis in the present book is on general processes, and the approach is more theoretical. Thus the details of the possible processes which can take place during the excitation of the sample, and during its heating, are carefully analysed. The methods for analysing TL glow curves are critically discussed, and recommendations as to their application are made. Also discussed is the expected behavior of these phenomena as functions of the experimental parameters, for example, dose of excitation. The consequences of the main applications of TL (for example, radiation dosimetry) are also discussed in detail as are the similarities and dissimilarities of other thermally stimulated phenomena, and the simultaneous measurements of the latter and TL.
Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays, ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the current interest and activity in optical fibers and optical communication, analysis of light propagation in inhomogeneous media is dealt with in great detail. The past decade has witnessed great advances in adaptive optics and compensation for optical aberrations. The formalism described herein can be used to calculate aberrations ofoptical systems. Toward the end of the book, we present application of the formalism to current research problems. Of particular interest is the use of dynamic programming techniques which can be used to handle variational/extremum problems. This method has only recently been applied to opticalproblems.
This textbook provides an accessible introduction to the fundamentals of geometric and physical optics as they relate to practical problems encountered by engineers and researchers in designing and analyzing optical systems. In this updated edition, the author focuses on topics that are critical to understanding how the basic principles of optics affect design decisions. In addition to information on breadboarding experiments and prototypes, the new edition also expands its coverage of holography and discusses important state-of-the-art issues in modern optics.
The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of "Optics", "Photonics" and "Lasers". The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.
"Quantum Interferometry in Phase Space" is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects. |
You may like...
Bioluminescence - Technology and Biology
Hirobumi Suzuki, Katsunori Ogoh
Hardcover
Ophthalmic Lenses and Accessories…
Bausch & Lomb Optical Company
Hardcover
R792
Discovery Miles 7 920
The Astrophysical Journal; 11
American Astronomical Society, University of Chicago
Hardcover
R991
Discovery Miles 9 910
Roentgen Rays - Memoirs by Roentgen…
Wilhelm Conrad 1845-1923 Roentgen
Hardcover
R755
Discovery Miles 7 550
Atlas of the Munsell Color System
A H (Albert Henry) 1858-1 Munsell
Hardcover
R683
Discovery Miles 6 830
|