![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range - is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine and in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies. In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator -whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a device can emit intensive spontaneous monochromatic radiation and even reach the coherence of laser light sources. Readers will be presented with the underlying fundamental physics and be familiarized with the theoretical, experimental and technological advances made during the last one and a half decades in exploring the various features of investigations into crystalline undulators. This research draws upon knowledge from many research fields - such as materials science, beam physics, the physics of radiation, solid state physics and acoustics, to name but a few. Accordingly, much care has been taken by the authors to make the book as self-contained as possible in this respect, so as to also provide a usefulintroduction to this emerging field to a broad readership of researchers and scientist with various backgrounds. This new edition has been revised and extended to take recent developments in the field into account."
The emergence of highly efficient short-wavelength laser diodes based on the III-V compound semiconductor GaN has not only enabled high-density optical data storage, but is also expected to revolutionize display applications. Moreover, a variety of scientific applications in biophotonics, materials research and quantum optics can benefit from these versatile and cost-efficient laser light sources in the near-UV to green spectral range. This thesis describes the device physics of GaN-based laser diodes, together with recent efforts to achieve longer emission wavelengths and short-pulse emission. Experimental and theoretical approaches are employed to address the individual device properties and optimize the laser diodes toward the requirements of specific applications.
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Laser Diode Microsystems provides the reader with the basic knowledge and understanding required for using semiconductor laser diodes in optical microsystems and micro-optical electromechanic systems. This tutorial addresses the fundamentals of semiconductor laser operation and design, coupled with an overview of the types of laser diodes suitable for use in Microsystems, along with their distinguishing characteristics. Emphasis is placed on laser diode characterization and measurement as well as the assembly techniques and optical accessories required for incorporation of semiconductor lasers into complex microsystems. Equipped with typical results and calculation examples, this hand-on text helps readers to develop a feel for how to choose a laser diode, characterize it and incorporate it into a microsystem.
Optical Solitons represent one of the most exciting and fascinating concepts in modern communications, arousing special interest due to their potential applications in optical fibre communication. This volume focuses on the explicit integration of analytical and experimental methods in nonlinear fibre optics and integrated optics. It covers all important recent technical issues in optical-soliton communication. For example, individual chapters are devoted to topics such as dispersion management and fibre Bragg grating. All authors are leading authorities in their fields.
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
Quantum Optics is a rapidly progressing field well suited to probe the many fundamental issues raised by the subtleties of quantum physics. This book consists of a collection of reviews and papers that highlight the most important challenges faced in this area of research, including topics such as cavity QED, quantum entanglement, decoherence, matter waves and nonlinear optics. It will be a source of reference for all those who wish to familiarize themselves with the latest developments in the field.
Proceedings of the Sixth International School of Coherent Optics, Ustron, Poland, September 19-26, 1985
This book contains most, but regrettably not all, the papers that were presented at The Advanced Research Workshop, held July 1-5, 1997, at Smolenice Castle, Slovak Republic. The problem of angular divergence is of great importance in quantum electronics: low divergence is required not only in most of practical laser applications, but also for achieving high efficiency of parametric laser frequency conversion, and harmonic generation. The large volume of available studies aimed at improving the pump systems and the spectroscopic properties of lasing media, brought about no more than 2-3 fold increases in laser efficiency, while concurrent studies of angular divergence and the implementation of the findings, resulted in several order of magnitude of increases in radiance. The spatial beam structure that is formed in the laser cavity together with the active element constitute the most critical laser elements. The engineering devices, such as excitation systems, lasing gas circulation systems, etc., are usually at the top of the agenda of scientific meetings and of gatherings of engineering experts. The divergence problem has never been discussed by a broad community of experts in this field.
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle waves at interfaces. It is intended for physicists, chemists, applied mathematicians and engineers, and is written in a simple direct style, with all necessary mathematics explained in the text.
This thesis reveals the utility of pursuing a statistical physics approach in the description of wave interactions in multimode optical systems. To that end, the appropriate Hamiltonian models are derived and their limits of applicability are discussed. The versatility of the framework allows the characterization of ordered and disordered lasers in open and closed cavities in a unified scheme, from standard mode-locking to random lasers. With the use of replica method and Monte Carlo simulations, the models are categorized on the basis of universal properties, and nontrivial predictions of experimental relevance are obtained. In particular, the approach makes it possible to nonperturbatively treat the interplay between disorder and nonlinearity and to envisage novel and fascinating physical phenomena such as glassy random lasers, providing a novel way to experimentally investigate replica symmetry breaking.
A NATO Advanced Research Workshop on "Advanced Radiation Sources and Applications" was held from August 29 to September 2, 2004. Hosted by the Yerevan Physics Institute, Yerevan, Armenia, 30 invited researchers from former Soviet Union and NATO countries gathered at Nor-Hamberd, Yerevan, on the slopes of Mount Aragats to discuss recent theoretical as well as expe- mental developments on means of producing photons from mostly low energy electrons. Thismeetingbecamepossiblethroughthegenerousfundingprovidedbythe NATO Science Committee and the programme director Dr. Fausto Pedrazzini in the NATO Scienti?c and Environmental Affairs Division. The workshop - rectors were Robert Avakian, Yerevan Physics Institute, Armenia and Helmut Wiedemann, Stanford (USA). Robert Avakian provided staff, logistics and - frastructure from the Yerevan Physics institute to assure a smooth execution of the workshop. Special thanks goes to Mrs. Ivetta Keropyan for admin- trative and logistics support to foreign visitors. The workshop was held at the institute's resort in Nor-Hamberd on the slopes of Mount Aragats not far from the Yerevan cosmic ray station. The isolation and peaceful setting of the resort provided the background for a fruitful week of presentations and discussions. Following our invitations, 38 researchers in this ?eld came to the workshop from Armenia, Belarus, Romania, Russia, Ukraine, Denmark, France, G- many and the USA. Commuting from Yerevan local scientists joined the daily presentations. Over a ?ve day period 40 presentations were given.
It is a great pleasure that we are now publishing the fourth volume of the series on PUILS, through which we have been introducing the progress in ultrafast intense laser science, the frontiers of which are rapidly expanding, thanks to the progress in ultrashort and high-power laser technologies. The interdisciplinary nature of this research ?eld is attracting researchers with di?erent expertise and backgrounds. As in the previousvolumeson PUILS, each chapter in the presentvolume, which is in the range of 15-25 pages, begins with an introduction in which a clear and concise account of the signi?cance of the topic is given, followed by a description of the authors' most recent research results. All the chapters are peer-reviewed. The articles of this fourth volume cover a diverse range of the interdisciplinary research ?eld, and the topics may be grouped into four categories: strong ?eld ionization of atoms (Chaps. 1-2), excitation, ioni- tion and fragmentation of molecules (Chaps. 3-5), nonlinear intense optical phenomena and attosecond pulses (Chaps. 6-8), and laser solid interactions and photoemissions (Chaps. 9-11).
Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.
Materials for Optoelectronics is the first book to offer a complete view of this subject area. It begins by describing the material needs defined by various optoelectronic functions. Basic aspects of the materials' specific properties are presented, including the relevant properties of semiconductors in terms of electron-photon interactions. Since the semiconductors for optoelectronics are generally based on alloys, the thermodynamic properties of interest are developed as well. Next, semiconductors for detection, emission and modulation are detailed. The fabrication of these materials is presented through a comparison and review of the epitaxial techniques. The III-V semiconductors for IR and visible light devices are presented. The II-VI family is also considered, with an emphasis on recent developments for visible light emission. A description of the status of silicon for optoelectronics is given as well. Finally, non-semiconductors for optoelectronics, namely optical fibers for telecommunications, electrooptic materials, and organic materials, are also presented. Materials for Optoelectronics is useful to materials and device engineers interested in increasing their knowledge of the potential and actual properties and uses of various materials. Students will also find this volume useful since it emphasizes the basic properties and needs for optoelectronics.
The study of semiconductor-layer structures using infrared ellipsometry is a rapidly growing field within optical spectroscopy. This book offers basic insights into the concepts of phonons, plasmons and polaritons, and the infrared dielectric function of semiconductors in layered structures. It describes how strain, composition, and the state of the atomic order within complex layer structures of multinary alloys can be determined from an infrared ellipsometry examination. Special emphasis is given to free-charge-carrier properties, and magneto-optical effects. A broad range of experimental examples are described, including multinary alloys of zincblende and wurtzite structure semiconductor materials, and future applications such as organic layer structures and highly correlated electron systems are proposed.
Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses normal graphs, ' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.
The quantum statistical properties of radiation represent an important branch of modern physics with rapidly increasing applications in spectroscopy, quantum generators of radiation, optical communication, etc. They have also an increasing role in fields other than pure physics, such as biophysics, psychophysics, biology, etc. Interesting applications have been developed in high energy elementary particle collisions. The present monograph represents an extension and continuation of the previous monograph by this author entitled Coherence of Light (Van Nostrand Reinhold Company, London 1972, translated into Russian in the Publishing House Mir, Moscow 1974, second edition published by D. Reidel, Dordrecht-Boston 1985) and ofa review chapter in Progress in Optics, Vol. 18 (edited by E. Wolf, North-Holland Publishing Company, Amsterdam 1980) as well. It applies the fundamental tools of the coherent-state technique, as described in Coherence of Light, to particular studies of the quantum statistical properties of radiation interacting with matter. In particular. nonlinear optical processes are considered, and purely quantum phenom ena such as antibunching of photons, their sub-Poisson behaviour and squeezing of vacuum fluctuations are discussed. Compared to the first edition of this book, pub lished in 1984, we have added much more information about squeezing of vacuum fluctuations in nonlinear optical process in this second edition; further we have included the description of experiments and their results performed from that time. Also a new brief chapter on nonlinear dynamics and chaos in quantum statistical optics has been included."
This book gives a complete account of electron momentum spectroscopy to date. It describes in detail the construction of spectrometers and the acquisition and reduction of cross-section data, explaining the quantum theory of the reaction and giving experimental verification.
This book is an outgrowth of a course given by the author for people in industry, government, and universities wishing to understand the implica tions of emerging optical fiber technology, and how this technology can be applied to their specific information transport and sensing system needs. The course, in turn, is an outgrowth of 15 exciting years during which the author participated in the research and development, as well as in the application, of fiber technology. The aim of this book is to provide the reader with a working knowledge of the components and subsystems which make up fiber systems and of a wide variety of implemented and proposed applications for fiber technology. The book is directed primarily at those who would be users, as opposed to developers, of the technology. The first half of this book is an overview of components and subsys tems including fibers, connectors, cables, sources, detectors, receivers, transmitters, and miscellaneous components. The goal is to familiarize the reader with the properties of these components and subsystems to the extent necessary to understand their potential applications and limitations."
Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range. "The monograph by Dr Wolfgang Becker is a complete and lucid
summary of both the basic principles and the state-of-the-art of
TCSPC. This book contains descriptions that are only available from
the primary literature or specialized web sites. An understanding
of the present technology will allow the reader to make effective
use of the multi-dimensional capabilities of modern time-resolved
fluorescence instruments."
The present book provides recent developments in various in vivo imaging and sensing techniques such as photo acoustics (PA) imaging and microscopy, ultrasound-PA combined modalities, optical coherence tomography (OCT) and micro OCT, Raman and surface enhanced Raman scattering (SERS), Fluorescence lifetime imaging (FLI) techniques and nanoparticle enabled endoscopy etc. There is also a contributing chapter from leading medical instrumentation company on their view of optical imaging techniques in clinical laparoscopic surgery. The UN proclaimed 2015 as the International Year of Light and Light-based Technologies, emphasizing achievements in the optical sciences and their importance to human beings. In this context, this book focusses on the recent advances in biophotonics techniques primarily focused towards translational medicine contributed by thought leaders who have made cutting edge developments in various photonics techniques. |
![]() ![]() You may like...
Handbook of Research Methods and…
Hans Keman, Jaap J. Woldendorp
Hardcover
R6,416
Discovery Miles 64 160
E-Cigarettes and the Comparative…
Virginia Berridge, Ronald Bayer, …
Hardcover
R1,623
Discovery Miles 16 230
Expansive - A Guide To Thinking Bigger…
John Sanei, Erik Kruger
Paperback
The Art of Experiment: Parmigianino at…
Ketty Gottardo, Guido Rebecchini
Paperback
R967
Discovery Miles 9 670
|