![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
The present book focuses on recent advances methods and applications in photovoltaic (PV) systems. The book is divided into two parts: the first part deals with some theoretical, simulation and experiments on solar cells, including efficiency improvement, new materials and behavior performances. While the second part of the book devoted mainly on the application of advanced methods in PV systems, including advanced control, FPGA implementation, output power forecasting based artificial intelligence technique (AI), high PV penetration, reconfigurable PV architectures and fault detection and diagnosis based AI. The authors of the book trying to show to readers more details about some theoretical methods and applications in solar cells and PV systems (eg. advanced algorithms for control, optimization, power forecasting, monitoring and fault diagnosis methods). The applications are mainly carried out in different laboratories and location around the world as projects (Algeria, KSA, Turkey, Morocco, Italy and France). The book will be addressed to scientists, academics, researchers and PhD students working in this topic. The book will help readers to understand some applications including control, forecasting, monitoring, fault diagnosis of photovoltaic plants, as well as in solar cells such as behavior performances and efficiency improvement. It could be also be used as a reference and help industry sectors interested by prototype development.
This book highlights the comprehensive knowledge and latest progress in broadband terahertz (THz) technology. THz communication technology is believed to be one of the major choices that succeed the fifth-generation (5G) communication technology. With years of efforts, the author's team has created a number of world records in the generation, transmission, and reception of ultra wideband THz signal, realizing the MIMO transmission and reception of THz communication, the THz signal transmission with communication capacity of 1 Tbit / s, and the optical fiber and THz integrated transmission. A variety of linear and nonlinear algorithms for multi-carrier and single-carrier THz communication systems are developed, which greatly improves the transmission performance of broadband systems. The book covers in details the broadband THz signal generation, long-distance transmission, and high sensitivity detection. It is of great reference value for researchers, engineers, and graduate students in optical and wireless communications.
Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference- sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference-are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter.
This textbook, now in an expanded third edition, emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics: Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, introductions to Lagrangian mechanics and the covariant formulation of electrodynamics are provided in appendices. This third edition includes 60 new exercises, new and improved illustrations, and new material on interpretations of quantum mechanics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.
This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.
The Encyclopedia of Modern Optics, Second Edition, Five Volume Set provides a wide-ranging overview of the field, comprising authoritative reference articles for undergraduate and postgraduate students and those researching outside their area of expertise. Topics covered include classical and quantum optics, lasers, optical fibers and optical fiber systems, optical materials and light-emitting diodes (LEDs). Articles cover all subfields of optical physics and engineering, such as electro-optical design of modulators and detectors. This update contains contributions from international experts who discuss topics such as nano-photonics and plasmonics, optical interconnects, photonic crystals and 2D materials, such as graphene or holy fibers. Other topics of note include solar energy, high efficiency LED's and their use in illumination, orbital angular momentum, quantum optics and information, metamaterials and transformation optics, high power fiber and UV fiber lasers, random lasers and bio-imaging.
Of interest to scientists working in the field of optics or nonlinear physics, this book gives an overview of current developments in nonlinear photorefractive optics. It dicusses exciting discoveries, with special emphasis on transverse effects such as spatial soliton formation and interaction, spontaneous pattern formation and pattern competition in active feedback systems. Different aspects of potential applications, such as wave guiding in adaptive photorefractive solitons and techniques for pattern control for information processing, are also described. The author Professor Denz received the Lise Meitner Prize in 1993 for her dissertation on photorefractive neural networks and in 1999 the Adolf Messer Prize for the development of an optical motion detection filter.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
This book provides a bridge between the basic principles of physics learned as an undergraduate and the skills and knowledge required for advanced study and research in the exciting field of atomic physics. The text is organized in a unique and versatile format --- as a collection of problems, hints, detailed solutions, and in-depth tutorials. This enables the reader to open the book at any page and get a solid introduction to subjects on the cutting edge of atomic physics, such as frequency comb metrology, tests of fundamental symmetries with atoms, atomic magnetometers, atom trapping and cooling, and Bose-Einstein condensates. The text also includes problems and tutorials on important basics that every practicing atomic physicist should know, but approached from the perspective of experimentalists: formal calculations are avoided where possible in favor of 'back-of-the-envelope' estimates, symmetry arguments, and physical analogies. The 2nd edition contains over 10 new problems, and includes important updates, revisions, and corrections of several problems of the 1st edition.
This thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations.
This book originates from lectures delivered at the First International School "Laser-surface interactions for new materials production: tailoring structure and properties" that was held in San Servolo Island, Venice (Italy) from 13 to 20 July, 2008 under the direction of A. Miotello and P. M. Ossi. The purpose of the School was to provide the students (mainly PhD) with a compreh- sive overview of basic aspects and applications connected to the laser-matter interaction both to modify surface properties and to prepare new materials by pulsed laser deposition (PLD) at the nanometer scale. The ?eld is re- tively young and grewrapidly in the last 10 years because of the possibility of depositingvirtuallyanymaterial,includingmulti-component?lms,preserving the composition of the ablated target and generally avoiding post-deposition thermaltreatments. Inaddition,theexperimentalsetupforPLDiscompatible with in situ diagnostics of both the plasma and the growing ?lm. The basic laser-surface interaction mechanisms, possibly in an ambient atmosphere, either chemically reactive or inert, are a challenge to sci- tists, while engineers are mostly interested in the characteristics of the deposited materials and the possibility of tailoring their properties through an appropriate tuning of the deposition parameters.
Quantum optics, i.e. the interaction of individual photons with
matter, began with the discoveries of Planck and Einstein, but in
recent years, it has expanded beyond pure physics to become an
important driving force for technological innovation. This book
serves the broader readership growing out of this development by
starting with an elementary description of the underlying physics
and then building up a more advanced treatment. The reader is led
from the quantum theory of the simple harmonic oscillator to the
application of entangled states to quantum information
processing.
Photonic Crystals: The Road from Theory to Practice explores the theoretical road leading to the practical application of photonic band gaps. These new optimal devices are based on symmetry and resonance and the benefits and limitations of hybrid "two dimensional" slab systems in three dimensions. The book also explains that they also signify a return to the ideal of an omnidirectional band gap in a structure inspired by and emulating the simplicity of two dimensions. Finally, the book takes a look at computational methods to solve the mathematical problems that underlie all undertakings in this field. Photonic Crystals: The Road from Theory to Practice should rapidly bring the optical professional and engineer up to speed on this intersection of electromagnetism and solid-state physics. It will also provide an excellent addition to any graduate course in optics.
* Guides readers into more detailed and technical treatments of readout optical signals * Gives a broad overview of optical signal detection including terahertz region and two-dimensional material * Helps readers further their studies by offering chapter-end problems and recommended reading.
This volume contains tutorial papers from the lectures and seminars presented at the NATO Advanced Study Institute on "Instabilities and Chaos in Quantum Optics", held at the "Il Ciocco" Conference Center, Castelvecchio Pascoli, Lucca, Italy, June 28-July 7, 1987. The title of the volume is designated Instabilities and Chaos in Quantum Optics II, because of the nearly coincident publication of a collection of articles on research in this field edited by F.T. Arecchi and R.G. Harrison [Instabilities and Chaos in Quantum Optics, (Springer, Berlin, 1987) 1. That volume provides more detailed information about some of these topics. Together they will serve as a comprehensive and tutorial pair of companion volumes. This school was directed by Prof. Massimo Inguscio, of the Department of Physics, University of Naples, Naples, Italy to whom we express our gratitude on behalf of all lecturers and students. The Scientific Advisory Committee consisted of N.B. Abraham of Bryn Mawr College; F.T. Arecchi of the National Institute of Optics in Florence and the University of Florence, and L.A. Lugiato of the Politechnic Institute of Torino. The school continues the long tradition of Europhysics Summer Schools in Quantum Electronics which have provided instruction and training for young researchers and advanced students working in this field for almost twenty years.
Nonlinear optical media have already opened up a universe rich in technological possibilities. Holograms can be recorded and erased in these media. And nonlinear optical media, such as photorefractive crystals, are highly efficient, particularly for wave mixing and phase conjugation. To make effective use of these media for the transmission and manipulation of optical information requires a clear understanding of the theory at the root of the entire phenomenon. Designed as a reference for advanced students in the area of modern optics for electrical engineering and applied physics, Introduction to Photorefractive Non-linear Optics not only sheds light on the field's basic underlying theorem but also clearly links it with practical applications, forming the first introductory textbook to balance both. While clearly illuminating such practical applications as optical computing and neural networks, the book's emphasis throughout is on the theory of the propagation of optical waves and the mixing of electromagnetic radiation in nonlinear optical media. In a progressive format that moves from the elementary to the complex, the book begins with the basics of electromagnetic waves and periodic structures, examining the physics of photorefractive effects and the mixing of waves in these media. Classical electrodynamics is used to describe the mixing of waves in photorefractive media. Concepts in elementary solid state physics are also used to clarify the discussion on the transport of charges in photorefractive crystals. Following chapters take an in-depth look at optical phase conjugators and photorefractive resonators. The fundamental principles of gratings and holograms are examined inchapters 7 and 8. The manifold applications in optical information processing, optical interconnection, and neural networks are clearly detailed in the following three chapters. The last chapter is devoted to a timely look at the higher order photorefractive effect in optical fibers. The result of the collective research and development conducted by scientists over the years at the Rockwell International Science Center, this important reference is an unprecedented inside look at the innovations at the technology's leading edge. Illustrating theory with useful numerical examples based on real situations, the book provides students with a clear practical grasp of the essentials of the science as well as the technology's day-to-day applications. Not simply a monograph, Introduction to Photorefractive Nonlinear Optics is, instead, a comprehensive introductory guide to understanding - and using - this fascinating evolving technology.
This book is dedicated to Professor Leonid V Keldysh. His brilliant contributions to condensed matter physics include the Franz-Keldysh effect, an electron-hole liquid, the nonequilibrium (Keldysh) diagram technique, Bose-Einstein condensation (of excitons) and a metal-dielectric'' transition, acoustically-induced superlattices, multi-photon transitions and impact ionization in solids. In many respects, his work influenced and formed the paradigm of modern condensed matter physics. As a result, many famous researchers in the field have enthusiastically provided unique contributions to the book.
This book highlights principles and applications of electromagnetic compatibility (EMC). After introducing the basic concepts, research progress, standardizations and limitations of EMC, the book puts emphasis on presenting the generation mechanisms and suppression principles of conducted electromagnetic interference (EMI) noise, radiated EMI noise, and electromagnetic susceptibility (EMS) problems such as electrostatic discharge (ESD), electric fast transient (EFT) and surge. By showing EMC case studies and solved examples, the book provides effective solutions to practical engineering problems. Students and researchers will be able to use the book as practical reference for EMC-related measurements and problem- solution.
This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
This book presents recent advances in studies of light propagation, scattering, emission and absorption in random media. Many natural and biological media vary randomly in time and space. Examples are terrestrial atmosphere and ocean, biological liquids and tissues to name but a few.
|
You may like...
Advanced Psychodiagnostic Interpretation…
Norman Reichenberg, Alan J. Raphael
Hardcover
Customer Advisory Boards - A Strategic…
David L Loudon, Tony Carter
Paperback
R1,657
Discovery Miles 16 570
|