![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Borate-based phosphors have attracted much attention, due to their high optical stability, low-cost synthesis via conventional and non-conventional methods and resulting technology to be environmentally friendly. This book discusses the structural and chemical parameters of borates as a phosphor including suitable synthesis methods and proper characterization of materials. Further, it includes applications of borate materials such as photoluminescence, UV application, UVU application, photo therapy application and radiological applications. Features: Provides information on borate phosphors and their structure. Aids selection of proper structural and functional borates used in applications based on phosphor technology. Discloses the modification in properties of borate functional group upon mixing or substitution with other metallic functional groups. Discusses biological applications such as photo-thermal heating-based therapy, temperature sensors, imaging, and diagnosis. Includes current trends and innovations, limitations and challenges, prospects, and scope in each chapter. This book is aimed at researchers and graduate students in inorganic materials, luminescent/optical materials, materials science/engineering, and physics.
Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
Presents a comprehensive study of the physical models for quantum dots (QDs) Discusses the properties of QDs and their applications Suggests ways to fine tune the electronic properties of QDs for specific applications Will be helpful for solid state physicists, material scientists, and engineers
A. Sommerfeld's "Mathematische Theorie der Diffraction" marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader.
Quantum mechanics has shown unprecedented success as a physical theory, but it has forced a new view on the description of physical reality. In recent years, important progress has been achieved both in the theory of open quantum systems and in the experimental realization and control of such systems. A great deal of the new results is concerned with the characterization and quantification of quantum memory effects. From this perspective, the 684. WE-Heraeus-Seminar has brought together scientists from different communities, both theoretical and experimental, sharing expertise on open quantum systems, as well as the commitment to the understanding of quantum mechanics. This book consists of many contributions addressing the diversified physics community interested in foundations of quantum mechanics and its applications and it reports about recent results in open quantum systems and their connection with the most advanced experiments testing quantum mechanics.
Covers the fundamentals and research on graphene, including synthesis, properties, and various applications of graphene nanosheets Is a unique book on such an advanced research topic Gives an overview of the current status of the research and development in graphene Is illustrated throughout with excellent figures and includes latest references to accompany each section
Shuji Nakamura's development of a blue semiconductor laser on the basis of GaN opens the way for a host of new applications of semiconductor lasers. The wavelengths can be tuned by controlling the composition. For the first time it is possible to produce lasers with various wavelengths, ranging from red through yellow and green to blue, in one substrate material. This fact, together with their high efficiency, makes GaN-based lasers very useful for a wide spectrum of applications. The second edition of this basic book on GaN-based devices has been updated and significantly extended. It includes a survey of worldwide research on GaN, as well as Nakamura's latest important developments. The reader finds a careful introduction to the physics and properties of GaN. The main part of the book deals with the production and characteristics of GaN LDs and LEDs. To complete the spectrum of applications, GaN power devices are also described.
This book describes and provides design guidelines for antennas that achieve compactness by using the slot radiator as the fundamental building block within a periodic array, rather than a phased array. It provides the basic electromagnetic tools required to design and analyse these novel antennas, with sample calculations where relevant. The book presents a focused introduction and valuable insights into the relevant antenna technology, together with an overview of the main directions in the evolving technology of compact planar arrays. While the book discusses the historical evolution of compact array antennas, its main focus is on summarising the extensive body of literature on compact antennas. With regard to the now ubiquitous slot radiator, it seeks to demonstrate how, despite significant antenna size reductions that at times even seem to defy the laws of physics, desirable radiation pattern properties can be preserved. This is supported by an examination of recent advances in frequency selective surfaces and in metamaterials, which can, if handled correctly, be used to facilitate physics-defying designs. The book offers a valuable source of information for communication systems and antenna design engineers, especially thanks to its overview of trends in compact planar arrays, yet will also be of interest to students and researchers, as it provides a focused introduction and insights into this highly relevant antenna technology.
Discusses the method to grow not only graphene over Cu but also allows the reader to know how to optimize graphene growth, using statistical design of experiments, on Cu interconnects in order to obtain good-quality and reliable interconnects Provides the basic understanding of graphene-Cu interaction mechanism Introduces a novel graphene growth process and graphene-assisted electroless copper plating
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it. This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are also discussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.
Semiconductor lasers are small, reliable, low cost, high-performance and user-friendly optical devices which make them highly suitable for a variety of biomedical applications. This edited book gathers experts in the field to cover the fundamentals and technology advances of semiconductor lasers and diode-based lasers with a focus on their applications in medical optics and biophotonics including edge-emitting semiconductor lasers and light emitting diodes, Q-switched and mode-locked lasers, quantum cascade lasers, semiconductor disk lasers, near-infrared spectroscopy systems for biomedical applications, bio-medical Raman spectroscopy, nonlinear imaging and optical coherence tomography.
Quantum information science is a new field of science and
technology which requires the collaboration of researchers coming
from different fields of physics, mathematics, and engineering:
both theoretical and applied. Quantum Computing and Quantum Bits in
Mesoscopic Systems addresses fundamental aspects of quantum
physics, enhancing the connection between the quantum behavior of
macroscopic systems and information theory. In addition to
theoretical quantum physics, the book comprehensively explores
practical implementation of quantum computing and information
processing devices.
This book explores the methods needed for creating and manipulating HDR content. HDR is a step change from traditional imaging; more closely matching what we see with our eyes. In the years since the first edition of this book appeared, HDR has become much more widespread, moving from a research concept to a standard imaging method. This new edition incorporates all the many developments in HDR since the first edition and once again emphasizes practical tips, including the authors' popular HDR Toolbox (available on the authors' website) for MATLAB and gives readers the tools they need to develop and experiment with new techniques for creating compelling HDR content. Key Features: Contains the HDR Toolbox for readers' experimentation on authors' website Offers an up-to-date, detailed guide to the theory and practice of high dynamic range imaging Covers all aspects of the field, from capture to display Provides benchmarks for evaluating HDR imagery
Since the incorporation of scientific approach in tackling problems of optical instrumentation, analysis and design of optical systems constitute a core area of optical engineering. A large number of software with varying level of scope and applicability is currently available to facilitate the task. However, possession of an optical design software, per se, is no guarantee for arriving at correct or optimal solutions. The validity and/or optimality of the solutions depend to a large extent on proper formulation of the problem, which calls for correct application of principles and theories of optical engineering. On a different note, development of proper experimental setups for investigations in the burgeoning field of optics and photonics calls for a good understanding of these principles and theories. With this backdrop in view, this book presents a holistic treatment of topics like paraxial analysis, aberration theory, Hamiltonian optics, ray-optical and wave-optical theories of image formation, Fourier optics, structural design, lens design optimization, global optimization etc. Proper stress is given on exposition of the foundations. The proposed book is designed to provide adequate material for 'self-learning' the subject. For practitioners in related fields, this book is a handy reference. Foundations of Optical System Analysis and Synthesis provides A holistic approach to lens system analysis and design with stress on foundations Basic knowledge of ray and wave optics for tackling problems of instrumental optics Proper explanation of approximations made at different stages Sufficient illustrations for facilitation of understanding Techniques for reducing the role of heuristics and empiricism in optical/lens design A sourcebook on chronological development of related topics across the globe This book is composed as a reference book for graduate students, researchers, faculty, scientists and technologists in R & D centres and industry, in pursuance of their understanding of related topics and concepts during problem solving in the broad areas of optical, electro-optical and photonic system analysis and design.
Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.
The rapid growth in communications and internet has changed our way of life, and our requirement for communication bandwidth. Optical networks can enable us to meet the continued demands for this bandwidth, although conventional optical networks struggle in achieving this, due to the limitation of the electrical bandwidth barrier. Flexgrid technology is a promising solution for future high-speed network design. To promote an efficient and scalable implementation of elastic optical technology in the telecommunications infrastructure, many challenging issues related to routing and spectrum allocation (RSA), resource utilization, fault management and quality of service provisioning must be addressed. This book reviews the development of elastic optical networks (EONs), and addresses RSA problems with spectrum fragment issues, which degrade the quality of service provisioning. The book starts with a brief introduction to optical fiber transmission system, and then provides an overview of the wavelength division multiplexing (WDM), and WDM optical networks. It discusses the limitations of conventional WDM optical networks, and discusses how EONs overcome these limitations. It presents the architecture of the EONs and its operation principle. To complete the discussion of network architecture, this book focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. It reviews and classifies different RSA approaches, including their pros and cons. It focuses on different aspects related to RSA. The spectrum fragmentation is a serious issue in EONs, which needs to be managed. The book explains the fragmentation problem in EONs, discusses, and analyzes the major conventional spectrum allocation policies in terms of the fragmentation effect in a network. The taxonomies of the fragmentation management approaches are presented along with different node architectures. State-of-the-art fragmentation management approaches are looked at. A useful feature of this book is that it provides mathematical modeling and analyzes theoretical computational complexity for different problems in elastic optical networks. Finally, this book addresses the research challenges and open issues in EONs and provides future directions for future research.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Fundamentals of Luminescence' elucidates the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. The book includes the chapters that cover: Basic principles of luminescence, the principal phosphor materials, and their optical properties New developments in principal phosphors in nitrides, perovskite, and silicon carbide Revised lanthanide level locations and its impact on phosphor performance Detailed descriptions of energy transfer and upconversion processes in bulk and nanoscaled particles and core-shell structures Rapid developing organic and polymer luminescent materials and devices
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Novel Phosphors, Synthesis, and Applications' provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. The chapters in this book cover: Various LED-based phosphors and their synthesis and applications Ingenious integrated smart phosphors and their novel optoelectronic and photonic devices Quantum dot, single crystalline, and glass phosphors Upconversion nanoparticles for super-resolution imaging and photonic and biological applications Special phosphors for laser, OLED, energy storage, quantum cutting, thermometry, photosynthesis, AC-driven LED, and solar cells
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Experimental Methods for Phosphor Evaluation and Characterization' addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies |
![]() ![]() You may like...
Coloring Lent - An Adult Coloring Book…
Christopher D. Rodkey
Paperback
From Exile to Home - Provisions and…
Resources for Small Group Bible Study
Hardcover
R815
Discovery Miles 8 150
Food Microstructures - Microscopy…
V.J. Morris, Kathy Groves
Hardcover
R4,962
Discovery Miles 49 620
The Practical Application of Medical and…
Milton H. Erickson, Seymour Hershman, …
Hardcover
R4,215
Discovery Miles 42 150
|