![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
Hardbound. Volume XXXV contains six review articles.The first article is a discussion on transverse light patterns in non-linear media, lasers and wide aperture interferometers. The next article deals with the detection and spectroscopic studies of single molecules in transparent solids at low temperature. The isolated spectral line of a single molecule makes it possible to perform basic quantum measurements, and allows probing in unprecedented detail of the surrounding solid matrix. The article also includes some suggestions for future research in this field.The next article reviews interferometric techniques for retrieving multispectral images with a large number of spectral channels. Special attention is paid to the theory of interferometric multispectral imaging which unifies the theories of coherence based image retrieval and spectrum recovery. Various techniques are compared, especially in terms of signal-to-noise-ratio.This chapter is foll
The Optical Society of America Conference on Applications of High Fields and Short Wavelength Sources, held in Santa Fe, New Mexico, USA, from March 20-22, 1997, was an exceptionally exciting conference. This conference was the seventh in a series of topical con ferences, held every two years, which are devoted to the generation and application of high field and short wavelength sources. The meeting was truly international in scope, with equal participation from both within and outside of the US. In the past two years, there has been dramatic progress in both laser and x-ray coher ent sources, both fundamental and applied. The 1997 meeting highlighted these advances, which are summarized in sections 1 and 2 of this volume. Terawatt-class lasers are now avail able in the UV or at high repetition rates. Michael Perry (LLNL) presented a keynote talk on petawatt class lasers and their applications in inertial confinement fusion, while Jorge Rocca (Colorado State University) presented a keynote talk on tabletop soft-x-ray lasers. Genera tion and measurement techniques are becoming very sophisticated throughout the UV and x ray region of the spectrum, and coherent sources have been extended to wavelengths below 30A. Phase control in the x-ray region is also now possible, and new phase-matching schemes in the UV have been experimentally demonstrated. It is clear that a new field of x-ray nonlin ear optics will deveiop rapidly over the next few years."
Optical Metrology for Fluids, Combustion and Solids is the first
practical handbook that presents the assemblage of the techniques
necessary to provide a basic understanding of optical measurement
for fluids, combustion, and solids. The use of light as a
measurement tool has grown over the past twenty years from a
narrowly specialized activity to a mainstay of modern research
today. Until recently, the knowledge that could be extracted from
the light interaction of light with physical objects was limited to
specialized activities. The invention of the laser, the computer
and microelectronics has enabled a measurement revolution such that
virtually every parameter of engineering interest can be measured
using the minimally intrusive properties of light.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.
The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today's grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature's 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Optical Wireless Communications for Broadband Global Internet Connectivity: Fundamental and Potential Applications provides a comprehensive overview for readers who require information about the fundamental science behind optical wireless communications, as well as up-to-date advanced knowledge of the state-of-the-art technologies available today. The book is a useful resource for scientists, researchers, engineers and students interested in understanding optical, wireless communication systems for global channels. Readers will find beneficial knowledge on how related technologies of optical wireless communications can be integrated into achieving worldwide Internet connectivity.
This textbook is designed to serve as an up-to-date treatment of physical optics for students. It concisely presents a quantitative development of physical optics by following Maxwell's equations and basic physics. This approach provides readers with the tools necessary to solve problems and develop a mathematical intuition for the subject based on their own experience. It is also notable for tying together many basic concepts and then applying these concepts in application problems.
"An efficient yet comprehensive representation of cutting-edge developments become extremely crucial at this juncture of twenty-first century. From that point-of-view, the present book exactly fits in the requirement content-wise." -From the Foreword by Ajit Kumar Panda, PhD, IEEE Distinguished Lecturer of ED Society Providing cutting-edge research on nanoelectronics and photonic devices and its application in future integrated circuits, this state-of-the-art book tackles the challenges of the different detailed theoretical and analytical models of solving the problems of various nanodevices. The volume also explores from different angles the roles of material composition and choice of materials that now play the most critical role in determining outcomes of various low-dimensional nanoelectronic devices. The applications of those findings are extremely beneficial for the computing and telecommunication industries. Beginning with a solid theoretical background for every chapter, this volume covers the hottest areas of present-day electronic engineering. The continuous miniaturization of devices, components, and systems requires corresponding cutting-edge theoretical analysis supported by simulated findings before actual fabrication. That purpose is given maximum focus in this volume, which has interdisciplinary appeal, making it a comprehensive technological volume that deals with underlying aspects of physics, materials, structures in nano-regime, and the corresponding end-product in the form of device. The chapters provide up-to-the-minute theoretical and experimental works on nanoscale devices, with special emphasis on nano-MOSFET modeling and characterization and the latest pioneering research in the area of nanodevice fabrication. Equivalent circuit modeling is also analyzed for a few specific devices, leading to potential applications in various systems. The research provided in Low-Dimensional Nanoelectronic Devices: Theoretical Analysis and Cutting-Edge Research will help researchers and scientists in this area better address real-world problems and challenges in developing new low-dimensional nanoelectronic devices and will contribute toward building sustainable technology for the future.
In the last few years the subject of optical cornmunications has moved rapidly from being a promising research area to a practical reality already being installed and carrying traffic in trunk networks in many countries. At the same time new applications for fibre technology are emerging and are placing new demands on the system components. In telecommunications there is a steady increase of interest in the use of fibres for undersea cables, in local area networks and wideband links, and a little further ahead the possibility of coherent communications systems. With an optical carrier bandwidth of 200 THz, today's maximum bit rates of the order of Gb s-l do not approach the limits of the medium, and questions about the ultimate limits of optical communications are already being asked. On a different front, the rapid advance of fibre sensors, previously drawing heavily on the communications technology, is becoming a major driving force in the development of fibres and other components. This picture of dramatic growth in optical technology gives rise to other phenomena. A profusion of small companies mushrooms to meet the demands of specific market areas, each such company formed around a nucleus of experienced personnel from the established research groups. Multi- nationals jostle for position in the optoelectronics marketplace and price wars develop as fibre costs fall. University groups expand with government and industrial funding in attempts to maintain long-term research options and produce trained personnei."
This book showcases the state of the art in the field of sensors and microsystems, revealing the impressive potential of novel methodologies and technologies. It covers a broad range of aspects, including: bio-, physical and chemical sensors; actuators; micro- and nano-structured materials; mechanisms of interaction and signal transduction; polymers and biomaterials; sensor electronics and instrumentation; analytical microsystems, recognition systems and signal analysis; and sensor networks, as well as manufacturing technologies, environmental, food and biomedical applications. The book gathers a selection of papers presented at the 19th AISEM National Conference on Sensors and Microsystems. Held in Lecce, Italy in February 2017, the event brought together researchers, end users, technology teams and policy makers.
This 2nd edition lays out an updated version of the general theory of light propagation and imaging through Earth's turbulent atmosphere initially developed in the late '70s and '80s, with additional applications in the areas of laser communications and high-energy laser beam propagation. New material includes a chapter providing a comprehensive mathematical tool set for precisely characterizing image formation with the anticipated Extremely Large Telescopes (ELTS), enabling a staggering range of star image shapes and sizes; existing chapters rewritten or modified so as to supplement the mathematics with clearer physical insight through written and graphical means; a history of the development of present-day understanding of light propagation and imaging through the atmosphere as represented by the general theory described. Beginning with the rudimentary, geometrical-optics based understanding of a century ago, it describes advances made in the 1960s, including the development of the 'Kolmogorov theory,' the deficiencies of which undermined its credibility, but not before it had done enormous damage, such as construction of a generation of underperforming 'light bucket' telescopes. The general theory requires no a priori turbulence assumptions. Instead, it provides means for calculating the turbulence properties directly from readily-measurable properties of star images.
This detailed volume explores a wide variety of techniques involving optical tweezers, a technology that has become increasingly more accessible to a broad range of researchers. Beginning with recent technical advances, the book continues by covering the application of optical tweezers to study DNA-protein interactions and DNA motors, protocols to perform protein (un)folding experiments, the application of optical tweezers to study actin- and microtubule-associated motor proteins, and well as protocols for investigating the function and mechanical properties of microtubules and intermediate filaments, and more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Optical Tweezers: Methods and Protocols, Second Edition serves as an ideal resource for expanding the accessibility and use of optical traps by scientists of diverse disciplines.
This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.
This is the 3rd volume of a "Light Scattering Reviews" series devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. This volume covers applications in remote sensing, inverse problems and geophysics, with a particular focus on terrestrial clouds. The influence of clouds on climate is poorly understood. The theoretical aspects of this problem constitute the main emphasis of this work.
Advances in Atomic, Molecular, and Optical Physics, Volume 67, provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review materials and detailed descriptions of important developments in the field.
This thesis reports on innovations in the design and direct synthesis of graphene-based woven fabric (GWF) and multi-layer graphene/porous carbon woven fabric films (MLG/PC) by means of chemical vapor deposition (CVD), using woven copper mesh and nickel mesh as the template. Further, it presents the successful applications of these materials as a platform for solar cells, super capacitors and sensors, making it especially of interest to researchers and graduate students in the fields of materials sciences, nanotechnology and renewable energy.
This volume contains papers presented at the NATO Advanced Research Workshop (ARW) on Photons and Local Probes. The workshop had two predecessors. The first was the NATO ARW on Near Field Optics, held in October 1992 at Arc et Senans and was organized by Daniel Courjon and Dieter Pohl. The other predecessor was a workshop on Photons and Scanning Probe Microscopies held at the University of Konstanz in July 1992. The workshop on Photons and Local Probes was held at the Loechnerhaus on the Reichenau Island at the Lake of Constance, from September 11 to 17, 1994. The Reichenau Island was an important place in Europe in the middle age. Even the tomb of one of the carolingian emperors, Charles the Fat, is located there. At this workshop more than 60 scientists from Europe and the United States met to communicate their latest results in the field of local probes in combination with optical techniques. In eight sessions 31 talks as well as 9 posters were presented. Among those 31 publications were submitted for publication in the NATO proceedings. They were accepted after a strict, but constructive refereeing process.
The research in this book represents the culmination of a drive to build the first discharge gas laser unencumbered by the effects of diffraction. This breakthrough has been achieved through careful implementation of a discharge within a hollow-core optical fibre, and by developing measurement and analysis techniques to demonstrate laser action in an experimental optical cavity. Gas lasers were amongst the earliest laser types to be demonstrated and commercialised, but it was recognised that noble gas lasers were limited by the minimum bore diameter of the laser tube, which is set by diffraction. The advent, in 2011, of hollow optical fibres with optical and physical properties suitable for gas discharge lasers opened up the opportunity to break this diffraction limit. Using a mixture of helium and xenon gas, lasing in the mid-infrared range was achieved using a 100m core flexible hollow optical fibre which, at 1m long, is several hundred times the diffraction-limited Rayleigh length.
Scattering experiments, using X-ray, light and neutron sources (in
historical order) are key techniques for studying structure and
dynamics in systems containing colliods, polymers, surfactants and
biological macromolecules, summarized here as soft condensed
matter. The education in this field in Europe is very heterogeneous
and frequently inadequate, which severely limits an efficient use
of these methods, especially at large-scale facilities. The series
of "Bombannes" schools and the completely revised and updated
second edition of the lecture notes are devoted to a practical
approach to current methodology of static and dynamic techiques.
Basic information on data interpretation, on the complementarity of
the different types of radiation, as well as information on recent
applications and developments is presented. The aim is to avoid
over - as well as under-exploitation of data.
The interaction of electromagnetic waves with matter in the frequency range between 10-6 and 1012 Hz is the domain of broadband dielectric spectroscopy. In this extraordinarily extended dynamic range molecular and collective dipolar fluctuations, charge transport and polarisation effects at inner and outer boundaries take place and determine the dielectric properties of the material being studied. Hence, broadband dielectric spectroscopy enables one to gain a wealth of information on the dynamics of bound (dipoles) and mobile charge carriers depending on the details of a molecular system. It is the intention of this book to be both an introductory course to broadband dielectric spectroscopy as well as a monograph describing recent dielectric contributions to current topics. In this respect the book will correspond to the needs of graduate students but also to specialized researchers, molecular physicists, polymer scientists and materials scientists in academia and in industry.
These proceedings gather a selection of invited and contributed papers presented during the 16th International Conference on X-Ray Lasers (ICXRL 2018), held in Prague, Czech Republic, from 7 to 12 October 2018. The conference is part of an ongoing series dedicated to recent developments in the science and technology of X-ray lasers and other coherent X-ray sources, with an additional focus on supporting technologies, instrumentation and applications. The book highlights advances in a wide range of fields including laser and discharge-pumped plasma X-ray lasers, the injection and seeding of X-ray amplifiers, high-order harmonic generation and ultrafast phenomena, X-ray free electron lasers, novel schemes for (in)coherent XUV, X-ray and -ray generation, XUV and X-ray imaging, optics and metrology, X-rays and -rays for fundamental science, the practical implementation of X-ray lasers, XFELs and super-intense lasers, and the applications and industrial uses of X-ray lasers.
This book offers a genuinely practical introduction to the most commonly encountered optical and non-optical systems used for the metrology and characterization of surfaces, including guidance on best practice, calibration, advantages and disadvantages, and interpretation of results. It enables the user to select the best approach in a given context. Most methods in surface metrology are based upon the interaction of light or electromagnetic radiation (UV, NIR, IR), and different optical effects are utilized to get a certain optical response from the surface; some of them record only the intensity reflected or scattered by the surface, others use interference of EM waves to obtain a characteristic response from the surface. The book covers techniques ranging from microscopy (including confocal, SNOM and digital holographic microscopy) through interferometry (including white light, multi-wavelength, grazing incidence and shearing) to spectral reflectometry and ellipsometry. The non-optical methods comprise tactile methods (stylus tip, AFM) as well as capacitive and inductive methods (capacitive sensors, eddy current sensors). The book provides: Overview of the working principles Description of advantages and disadvantages Currently achievable numbers for resolutions, repeatability, and reproducibility Examples of real-world applications A final chapter discusses examples where the combination of different surface metrology techniques in a multi-sensor system can reasonably contribute to a better understanding of surface properties as well as a faster characterization of surfaces in industrial applications. The book is aimed at scientists and engineers who use such methods for the measurement and characterization of surfaces across a wide range of fields and industries, including electronics, energy, automotive and medical engineering. |
![]() ![]() You may like...
A Research Agenda for Human Rights
Michael Stohl, Alison Brysk
Hardcover
R3,020
Discovery Miles 30 200
A Manifesto For Social Change - How To…
Moeletsi Mbeki, Nobantu Mbeki
Paperback
![]()
Putting Process Drama into Action - The…
Pamela Bowell, Brian S. Heap
Hardcover
R4,019
Discovery Miles 40 190
An Introduction to Nonlinear Analysis…
Zdzislaw Denkowski, Stanislaw Migorski, …
Hardcover
R5,772
Discovery Miles 57 720
|