![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
Optical Properties and Remote Sensing of Inland and Coastal Waters discusses the methodology and the theoretical basis of remote sensing of water. It presents physical concepts of aquatic optics relevant to remote sensing techniques and outlines the problems of remote measurements of the concentrations of organic and inorganic matter in water. It also details the mathematical formulation of the processes governing water-radiation interactions and discusses the development of bio-optical models to incorporate optically complex bodies of water into remote sensing projects. Optical Properties and Remote Sensing of Inland and Coastal Waters derives and evaluates the interrelationships among inherent optical properties of natural water, water color, water quality, primary production, volume reflectance spectra, and remote sensing. This timely and comprehensive text/reference addresses the increasing tendency toward multinational and multidisciplinary climate studies and programs.
"...provides the full, exciting story of optical modulators. ... a comprehensive review, from the fundamental science to the material and processing technology to the optimized device design to the multitude of applications for which broadband optical modulators bring great value. ... Especially valuable in my view is that the authors are internationally known researchers, developers, and systems people who are experts in their field, writing now, with the perspective that time offers, about their groundbreaking work. " -Dr. Rodney C. Alferness, Senior Vice President of Optical Networking Research at Lucent Technologies' Bell Labs Considered the most comprehensive book yet published on this critical subject, Broadband Optical Modulators: Science, Technology, and Applications offers an incredibly wide-ranging yet in-depth overview of the state of the art in the design and use of optical modulators. A compilation of expert insights, this book covers fundamental and practical aspects, from materials to systems, addressing historical and more recent developments. Coverage includes: Optical and electro-optic properties of traditional single crystalline lithium niobate, silicon, and III-V compound semiconductors, as well as emerging electro-optic polymers and organic nonlinear optic crystals Discussion of factors important to modulator design, fabrication, and performance Fundamental topics, such as electro-optic effect in nonlinear optic crystals and semiconductors Leaders in the field created this invaluable reference for scientific researchers involved in high-speed device research and development, especially in the areas of optical transmitters and optical modulators for fiber-optics communication systems. Helping readers master optical modulation techniques, this book will be invaluable to engineers (system/subsystem designers, product developers, and technical and project managers) and other professionals in the telecommunications and defense industries. It offers the audience-which includes graduate students-an in-depth understanding of the new modulator architectures and technologies now available, as well as the strengths, weaknesses, advantages, and trade-offs associated with each.
Spin angular momentum of photons and the associated polarization of light has been known for many years. However, it is only over the last decade or so that physically realizable laboratory light beams have been used to study the orbital angular momentum of light. In many respects, orbital and spin angular momentum behave in a similar manner, but they differ significantly in others. In particular, orbital angular momentum offers exciting new possibilities with respect to the optical manipulation of matter and to the study of the entanglement of photons. Bringing together 44 landmark papers, Optical Angular Momentum offers the first comprehensive overview of the subject as it has developed. It chronicles the first decade of this important subject and gives a definitive statement of the current status of all aspects of optical angular momentum. In each chapter the editors include a concise introduction, putting the selected papers into context and outlining the key articles associated with this aspect of the subject.
While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as mitigating stray light and mating systems by eye. The first three chapters of the book focus on subjects important to the design of systems using molded optics: optical design, visual optics, and stray light. Following these background chapters, the text provides in-depth information on the design and manufacture of molded plastic optics, molded glass optics, and molded infrared optics. The final chapter on testing emphasizes the special characteristics of molded optics. Experts in their particular areas, the authors draw on their considerable knowledge and real-world experiences to give a thorough account of the design and manufacture of molded plastic, glass, and infrared optics. The book will help readers improve their ability to develop systems that employ molded optics.
High brightness metal vapor lasers have become the most bright and powerful in the visible spectral range among all existing laser types, resulting in numerous applications ranging from purely fundamental research to practical application in large-scale commercial problems such as isotope selection. This book presents a full series of fundamental problems on the development of physical fundamentals and mathematical models for practical realization of a high-power laser radiation on self-contained transitions in metal atoms. It is the first fundamental review on physics and the technique of high-brightness metal vapor lasers.
Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals is a comprehensive and updated research monograph that focuses on recent advances in metamaterials based on the effective medium theory in microwave frequencies. Most of these procedures were conducted in the State Key Laboratory of Millimeter Waves, Southeast University, China. The book conveys the essential concept of metamaterials from the microcosmic structure to the macroscopic electromagnetic properties and helps readers quickly obtain needed skills in creating new devices at microwave frequencies using metamaterials. The authors present the latest progress on metamaterials and transformation optics and provide abundant examples of metamaterial-based devices accompanied with detailed procedures to simulate, fabricate, and measure them. Comprised of ten chapters, the book comprehensively covers both the fundamentals and the applications of metamaterials. Along with an introduction to the subject, the first three chapters discuss effective medium theory and artificial particles. The next three chapters cover homogeneous metamaterials (super crystals), random metamaterials (super noncrystals), and inhomogeneous metamaterials (super quasicrystals). The final four chapters examine gradient-index inhomogeneous metamaterials, nearly isotropic inhomogeneous metamaterials, and anisotropic inhomogeneous metamaterials, after which the authors provide their conclusions and closing remarks. The book is completely self-contained, making it easy to follow.
Direct3D 11 offers such a wealth of capabilities that users can sometimes get lost in the details of specific APIs and their implementation. While there is a great deal of low-level information available about how each API function should be used, there is little documentation that shows how best to leverage these capabilities. Written by active members of the Direct3D community, Practical Rendering and Computation with Direct3D 11 provides a deep understanding of both the high and low level concepts related to using Direct3D 11. The first part of the book presents a conceptual introduction to Direct3D 11, including an overview of the Direct3D 11 rendering and computation pipelines and how they map to the underlying hardware. It also provides a detailed look at all of the major components of the library, covering resources, pipeline details, and multithreaded rendering. Building upon this material, the second part of the text includes detailed examples of how to use Direct3D 11 in common rendering scenarios. The authors describe sample algorithms in-depth and discuss how the features of Direct3D 11 can be used to your advantage. All of the source code from the book is accessible on an actively maintained open source rendering framework. The sample applications and the framework itself can be downloaded from http://hieroglyph3.codeplex.com By analyzing when to use various tools and the tradeoffs between different implementations, this book helps you understand the best way to accomplish a given task and thereby fully leverage the potential capabilities of Direct3D 11. Key Features Presents the high level concepts used to design algorithms Describes the nuts and bolts of how to implement the algorithms Explains each of the major components of the Direct3D 11 library Shows how Direct3D 11 can be used in a variety of real-world situations Provides source code and sample programs on a supplementary website
Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on Laser assisted Fabrication' is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.
A number of applications including scientific spectroscopy, security screening, and medical imaging have benefitted from the development and utilization of new and emerging terahertz (THz) generation and detection techniques. Exploring recent discoveries and the advancements of biological behaviors through THz spectroscopy and imaging and the development of THz medical techniques, Terahertz Biomedical Science and Technology contains contributions from scientists and researchers in the terahertz biomedical field and is exclusively dedicated to new and emerging terahertz biomedical research and applications. This text offers an assessment of terahertz technology, and provides a compilation of fundamental biological studies conducted using terahertz waves. It introduces THz electromagnetic waves as a new tool for convergent studies, includes laser-based generation techniques and solid-state devices, contains a number of detectors, and discusses high-field generation methods. The material covers recent advancements in terahertz imaging for medical applications-most specifically in cancer diagnosis-reviewing the current status of the THz imaging technique for diagnosing cancers, and exploring the potential medical applications of THz radiation. It also considers the development of future medical applications using terahertz technology. Summarizes the recent progress made in THz waveguides, which are absolutely essential in the development of THz endoscopes Describes the dynamic imaging of drug absorption in skin, exploiting the sensitivity of THz waves to pharmaceutical materials Explores the principle and applications of THz molecular imaging techniques using nanoparticle probes Scientists and engineers involved in biological research and medical applications using optical techniques, as well as graduate students and instructors in optics, physics, electrical engineering, biology, chemistry, and medicine can benefit from this text which highlights new and emerging biomedical studies utilizing novel THz wave techniques.
Foreword by Nobel laureate Professor Theodor W. Hansch of Ludwig-Maximilians-Universitat Munchen Based on the authors' experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications. After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions. Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas-including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology-revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.
Adaptive Optics for Biological Imaging brings together groundbreaking research on the use of adaptive optics for biological imaging. The book builds on prior work in astronomy and vision science. Featuring contributions by leaders in this emerging field, it takes an interdisciplinary approach that makes the subject accessible to nonspecialists who want to use adaptive optics techniques in their own work in biology and bioengineering. Organized into three parts, the book covers principles, methods, and applications of adaptive optics for biological imaging, providing the reader with the following benefits: Gives a general overview of applied optics, including definitions and vocabulary, to lay a foundation for clearer communication across disciplines Explains what kinds of optical aberrations arise in imaging through various biological tissues, and what technology can be used to correct for these aberrations Explores research done with a variety of biological samples and imaging instruments, including wide-field, confocal, and two-photon microscopes Discusses both indirect wavefront sensing, which uses an iterative approach, and direct wavefront sensing, which uses a parallel approach Since the sample is an integral part of the optical system in biological imaging, the field will benefit from participation by biologists and biomedical researchers with expertise in applied optics. This book helps lower the barriers to entry for these researchers. It also guides readers in selecting the approach that works best for their own applications.
This book presents peer-reviewed and selected papers of the International Youth Conference on Electronics, Telecommunications, and Information Technologies (YETI-2021), held in Peter the Great St. Petersburg Polytechnic University, St. Petersburg, on April 22-23, 2021. For the third time around, the conference brings together students and early career scientists, serving to disseminate the current trends and advances in electronics, telecommunications, optical, and information technologies. A series of workshops and poster sessions focusing, in particular, on the theoretical and practical challenges in nanotechnologies, photonics, signal processing, and telecommunications allow to establish contacts between potential partners, share new ideas, and start new collaborations. The conference is held in an online format, thus considerably expanding its geographical reach and offering an even wider scope of discussion.
This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.
This much-needed text brings the treatment of optical pattern recognition up-to-date in one comprehensive resource. Optical pattern recognition, one of the first implementations of Fourier Optics, is now widely used, and this text provides an accessible introduction for readers who wish to get to grips with how holography is applied in a practical context. A wide range of devices are addressed from a user perspective and are accompanied with detailed tables enabling performance comparison, in addition to chapters exploring computer-generated holograms, optical correlator systems, and pattern matching algorithms. This book will appeal to both lecturers and research scientists in the field of electro-optic devices and systems. Features: Covers a range of new developments, including computer-generated holography and 3D image recognition Accessible without a range of prior knowledge, providing a clear exposition of technically difficult concepts Contains extensive examples throughout to reinforce learning
Thin-film coatings are universal on optical components such as displays, lenses, mirrors, cameras, and windows and serve a variety of functions such as antireflection, high reflection, and spectral filtering. Designs can be as simple as a single-layer dielectric for antireflection effects or very complex with hundreds of layers for producing elaborate spectral filtering effects. Starting from basic principles of electromagnetics, design techniques are progressively introduced toward more intricate optical filter designs, numerical optimization techniques, and production methods, as well as emerging areas such as phase change materials and metal film optics. Worked examples, Python computer codes, and instructor problem sets are included. Key Features: Starting from the basic principles of electromagnetics, topics are built in a pedagogic manner toward intricate filter designs, numerical optimization and production methods. Discusses thin-film applications and design from simple single-layer effects to complex several-hundred-layer spectral filtering. Includes modern topics such as phase change materials and metal film optics. Includes worked examples, problem sets, and numerical examples with Python codes.
This book is intended as a graduate/post graduate level textbook for courses on high-speed optical networks as well as computer networks. The ten chapters cover basic principles of the technology as well as latest developments and further discuss network security, survivability, and reliability of optical networks and priority schemes used in wavelength routing. This book also goes on to examine Fiber To The Home (FTTH) standards and their deployment and research issues and includes examples in all the chapters to aid the understanding of problems and solutions. Presents advanced concepts of optical network devices Includes examples and exercises inall the chapters of the book to aid the understanding of basic problems and solutions for undergraduate and postgraduate students Discusses optical ring metropolitan area networks and queuing system and its interconnection with other networks Discusses routing and wavelength assignment Examines restoration schemes in the survivability of optical networks
A comprehensive, up-to-date review of the physics and applications of a major class of laser, the most important example of which is the copper vapour laser. A collection of 50 papers written by the world's leaders in the field. Papers cover: the early history of pulsed metal vapour lasters; the plasma kinetics and excitation mechanisms of self terminating and recombination metal vapour lasers; beam quality issues for applications; frequency harmonic generation for mid-UV applications; high-precision processing of metals, ceramics, glasses and plastics using metal vapour lasers; applications in medicine, including oncology and dermatology; applications in science such as spectroscopy and mass spectrometry. A practical source of information on the physics, engineering and applications of metal vapour lasers. Audience: scientists, teachers and graduate researchers working in the fields of gas lasers, laser optics, gas discharges, optoelectronics and laser applications in industry, science and medicine.
Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials.
Praise for the 1st Edition: "well written and up to date.... The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." Optics & Photonics News "rigorous but simple description of a difficult field keeps the reader's attention throughout.... serves perfectly for an introductory-level course." Physics Today This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes: A new chapter on quantum nonlinear optics. Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices. Treatment of numerical methods to solving sets of complex nonlinear equations. Many problems in each chapter to challenge reader comprehension. Extended treatment of four-wave mixing and solitons. Coverage of ultrafast pulse propagation including walk-off effects.
This books aims to present fundamental aspects of optical communication techniques and advanced modulation techniques and extensive applications of optical communications systems and networks employing single-mode optical fibers as the transmission system. New digital techqniues such as chromatic dispersion, polarization mode dispersion, nonlinear phase distortion effects, etc. will be discussed. Practical models for practice and understanding the behavior and dynamics of the devices and systems will be included.
This reference book concentrates on microstructuring surfaces of optical materials with directed fluxes of off-electrode plasma generated by high-voltage gas discharge and developing methods and equipment related to this technique. It covers theoretical and experimental studies on the electrical and physical properties of high-voltage gas discharges used to generate plasma outside an electrode gap. A new class of methods and devices that makes it possible to implement a series of processes for fabricating diffraction microstructures on large format wafers is also discussed.
In recent years, there has been increasing activity in the research and design of optical systems based on liquid crystal (LC) science. Bringing together contributions from leading figures in industry and academia, Optical Applications of Liquid Crystals covers the range of existing applications as well as those in development. Unique in its thorough coverage of applications, not just the basic chemistry and physics of liquid crystals, the book begins with the existing applications of liquid crystals, from the ubiquitous LCD through to LC projectors and holography. The remaining chapters discuss more promising technologies in development, including photoaligning, photopatterning, and bistable twisted nematic LCs.
Covering high-energy ultrafast amplifiers and solid-state, fiber, and diode lasers, this reference examines recent developments in high-speed laser technology. It presents a comprehensive survey of ultrafast laser technology, its applications, and future trends in various scientific and industrial areas. Topics include: micromachining applications for metals, dielectrics, and biological tissue; advanced electronics and semiconductor processing; optical coherence tomography; multiphoton microscopy; optical sampling and scanning; THz generation and imaging; optical communication systems; absolute phase control of optical signals; and more. |
You may like...
Illite - Origins, Evolution and…
Alain Meunier, Bruce D. Velde
Hardcover
R4,172
Discovery Miles 41 720
Introduction to Computational Economics…
Hans Fehr, Fabian Kindermann
Hardcover
R4,258
Discovery Miles 42 580
Diffractive Optics and Optical…
S. Martellucci, Arthur N. Chester
Hardcover
R4,346
Discovery Miles 43 460
Management and Cost Accounting For…
Mark P Holtzman, Sandy Hood
Paperback
(1)R573 Discovery Miles 5 730
Research Anthology on Recent Trends…
Information Reso Management Association
Hardcover
R9,795
Discovery Miles 97 950
Computer Modeling of Free-Surface and…
M. Hanif Chaudhry, L. Mays
Hardcover
R13,023
Discovery Miles 130 230
|