0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (13)
  • R250 - R500 (115)
  • R500+ (4,225)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Optics (light)

Transient Magnetic Fields (Hardcover, 1st ed. 2020): Neil R. Sheeley, Jr. Transient Magnetic Fields (Hardcover, 1st ed. 2020)
Neil R. Sheeley, Jr.
R3,800 Discovery Miles 38 000 Ships in 18 - 22 working days

This book is an original study aimed at understanding how vacuum magnetic fields change with time. Specifically, it describes the waves that radiate from a sphere when the electric current on its surface is turned on or off, either suddenly, gradually, or periodically. Numerical simulations are an invaluable source of information about this and related subjects, but they are often more difficult to interpret than exact, closed-form solutions that can easily be applied to a variety of situations. Thus, the objective here is to obtain an exact solution of Maxwell's equations in closed form-something simple, yet rigorous, which can be used as a model for understanding transient magnetic fields in more complicated situations. The work therefore stands as a self-contained solution of Maxwell's equations for an electric current wrapped around the surface of a sphere. This study assumes a strong background in electromagnetism or a related research area. Online animations are available for each figure to better illustrate the motions of magnetic field lines.

Interaction Of Mid-infrared Parametric Waves In Laser Plasmas (Hardcover): Rashid Ganeev Interaction Of Mid-infrared Parametric Waves In Laser Plasmas (Hardcover)
Rashid Ganeev
R2,834 Discovery Miles 28 340 Ships in 18 - 22 working days

It is interesting to analyze the application of mid-infrared (MIR, 1000-5000 nm) radiation to study the dynamics of the nonlinear optical response of ablated molecular structures compared with commonly used Ti: sapphire lasers for plasma high-order harmonic generation (HHG), including the studies of extended harmonics at a comparable conversion efficiency with shorter wavelength laser sources, and a search for new opportunities in improvement of the HHG conversion efficiency in the mid-IR range, such as the application of clustered molecules. This book shows the most recent findings of various new schemes of the application of MIR pulses for HHG in laser-produced low-ionised, low-density plasma plumes, which could be dubbed for simplicity as 'plasma harmonics'. The use of any element of the periodic table, as well as thousands of complex samples that exist as solids largely extends the range of materials employed, whereas only a few rare gases are typically available for gas HHG. The exploration of practically any solid-state material through the nonlinear spectroscopy comprising laser ablation and harmonic generation can be considered as a new tool for materials science. Thus the MIR pump based laser-ablation-induced high-order harmonic generation spectroscopy can be considered a new method for the study of materials and one of most important applications of plasma HHG.

Microoptics and Nanooptics Fabrication (Paperback): Shanalyn Kemme Microoptics and Nanooptics Fabrication (Paperback)
Shanalyn Kemme
R2,400 Discovery Miles 24 000 Ships in 10 - 15 working days

The deep interconnection between micro/nanooptical components and related fabrication technologies-and the constant changes in this ever-evolving field-means that successful design depends on the engineer's ability to accommodate cutting-edge theoretical developments in fabrication techniques and experimental realization. Documenting the state of the art in fabrication processes, Microoptics and Nanooptics Fabrication provides an up-to-date synopsis of recent breakthroughs in micro- and nanooptics that improve key developmental processes. This text elucidates the precise and miniaturized scale of today's fabrication methods and their importance in creating new optical components to access the spectrum of physical optics. It details successful fabrication techniques and their direct effect on the intended performance of micro- and nanooptical components. The contributors explore the constraints related to material selection, component lateral extent, minimum feature size, and other issues that cause fabrication techniques to lag behind corresponding theory in the development process. Written with the professional optical engineer in mind, this book omits the already well-published broader processing fundamentals. Instead it focuses on key tricks of the trade helpful in reformulating processes to achieve necessary optical targets, improve process fidelity, and reduce production costs. The contributing authors represent the vanguard in micro-optical fabrication. The result of their combined efforts, this searing analysis of emerging fabrication technologies will continue to fuel the expansion of optics components, from the microwave to the infrared through the visible regime.

Optical Methods of Measurement - Wholefield Techniques, Second Edition (Paperback, 2nd edition): Rajpal Sirohi Optical Methods of Measurement - Wholefield Techniques, Second Edition (Paperback, 2nd edition)
Rajpal Sirohi
R2,569 Discovery Miles 25 690 Ships in 10 - 15 working days

Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections. The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emphasis on phase measurement interferometry and algorithms. The remainder of the book focuses on theory, experimental arrangements, and applications of wholefield techniques. The author discusses digital hologram interferometry, digital speckle photography, digital speckle pattern interferometry, Talbot interferometry, and holophotoelasticity. This updated book compiles the major wholefield methods of measurement in one volume. It provides a solid understanding of the techniques by describing the physics behind them. In addition, the examples given illustrate how the techniques solve measurement problems.

Biochemical Applications of Nonlinear Optical Spectroscopy (Paperback): Vladislav Yakovlev Biochemical Applications of Nonlinear Optical Spectroscopy (Paperback)
Vladislav Yakovlev
R2,407 Discovery Miles 24 070 Ships in 10 - 15 working days

For a host of reasons, nonlinear optical spectroscopy is a valuable tool for biochemical applications where minimally invasive diagnostics is desired. Biochemical Applications of Nonlinear Optical Spectroscopy presents the latest technological advances and offers a perspective on future directions in this important field. Written by an international panel of experts, this volume begins with a comparison of nonlinear optical spectroscopy and x-ray crystallography. The text examines the use of multiphoton fluorescence to study chemical phenomena in the skin, the use of nonlinear optics to enhance traditional optical spectroscopy, and the multimodal approach, which incorporates several spectroscopic techniques in one instrument. Later chapters explore Raman microscopy, third-harmonic generation microscopy, and non-linear Raman microspectroscopy. The text explores the promise of beam shaping and the use of broadband laser pulse generated through continuum generation and an optical pulse shaper. Lastly, the book discusses the effects of spatial beam shaping on the generated nonlinear Raman signals in a tightly focused geometry and provides insight into the extension of nonlinear optical spectroscopy to the nanoscale through the use of plasmonic tip-enhanced arrangement. With novel experimental approaches to this technology expanding day-by-day, the book's balanced coverage from a wide range of international contributors not only elucidates important achievements, but also outlines future directions in this dynamic and promising field.

The MOCVD Challenge - A survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications, Second Edition... The MOCVD Challenge - A survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications, Second Edition (Paperback, 2nd edition)
Manijeh Razeghi
R2,396 Discovery Miles 23 960 Ships in 10 - 15 working days

Written by one of the driving forces in the field, The MOCVD Challenge is a comprehensive review covering GaInAsP-InP, GaInAsP-GaAs, and related material for electronic and photonic device applications. These III-V semiconductor compounds have been used to realize the electronic, optoelectronic, and quantum devices that have revolutionized telecommunications. The figure on the back cover gives the energy gap and lattice parameter for the entire compositional range of the binary, ternary, and quaternary combinations of these III-V elements. By understanding the material and learning to control the growth new devices become possible: the front cover shows the world's first InP/GaInAs superlattice that was fabricated by the author - this has gone on to be the basis of modern quantum devices like quantum cascade lasers and quantum dot infrared photodetectors. Now in its second edition, this updated and combined volume contains the secrets of MOCVD growth, material optimization, and modern device technology. It begins with an introduction to semiconductor compounds and the MOCVD growth process. It then discusses in situ and ex situ characterization for MOCVD growth. Next, the book examines in detail the specifics of the growth of GaInP(As)-GaAs and GaInAs(P)-InP material systems. It examines MOCVD growth of various III-V heterojunctions and superlattices and discusses electronic and optoelectronic devices realized with this material. Spanning 30 years of research, the book is the definitive resource on MOCVD.

Applied Optics Fundamentals and Device Applications - Nano, MOEMS, and Biotechnology (Paperback): Mark Mentzer Applied Optics Fundamentals and Device Applications - Nano, MOEMS, and Biotechnology (Paperback)
Mark Mentzer
R2,416 Discovery Miles 24 160 Ships in 10 - 15 working days

How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology-and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems-including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.

Nanotechnology for Telecommunications (Paperback): Sohail Anwar, M. Yasin Akhtar Raja, Salahuddin Qazi, Mohammad Ilyas Nanotechnology for Telecommunications (Paperback)
Sohail Anwar, M. Yasin Akhtar Raja, Salahuddin Qazi, Mohammad Ilyas
R2,428 Discovery Miles 24 280 Ships in 10 - 15 working days

With its unique promise to revolutionize science, engineering, technology, and other fields, nanotechnology continues to profoundly impact associated materials, components, and systems, particularly those used in telecommunications. These developments are leading to easier convergence of related technologies, massive storage data, compact storage devices, and higher-performance computing. Nanotechnology for Telecommunications presents vital technical scientific information to help readers grasp issues and challenges associated with nanoscale telecommunication system development and commercialization-and then avail themselves of the many opportunities to be gleaned. This book provides technical information and research ideas regarding the use of nanotechnology in telecommunications and information processing, reflecting the continuing trend toward the use of optoelectronics. Nanotech will eventually lead to a technology cluster that offers a complete range of functionalities for systems used in domains including information, energy, construction, environmental, and biomedical. Describing current and future developments that hold promise for significant innovations in telecommunications, this book is organized to provide a progressive understanding of topics including: Background information on nanoscience and nanotechnology Specific applications of nanotechnology in telecommunications Nanostructured optoelectronic materials MEMS, NEMS, and their applications in communication systems Quantum dot Cellular Automata (QCA) and its applications in telecommunication systems How nonohmic nonlinear behavior affects both digital and analog signal processing Concepts regarding quantum switching and its applications in quantum networks The scale of the physical systems that use nanoscale electronic devices is still large, and that presents serious challenges to the establishment of interconnections between nanoscale devices and the outside world. Also addressing consequent social implications of nanotech, this book reviews a broad range of the nano concepts and their influence on every aspect of telecommunications. It describes the different levels of interconnections in systems and details the standardized assembly process for a broad specrum of micro-, nano-, bio-, fiber-optic, and optoelectronic components and functions. This book is a powerful tool for understanding how to harness the power of nanotech through integration of materials, processes, devices, and applications.

Second-order Nonlinear Optical Characterization Techniques - An Introduction (Paperback): Thierry Verbiest, Koen Clays, Vincent... Second-order Nonlinear Optical Characterization Techniques - An Introduction (Paperback)
Thierry Verbiest, Koen Clays, Vincent Rodriguez
R2,337 Discovery Miles 23 370 Ships in 10 - 15 working days

Although chemists, biochemists, biologists, and material scientists are often interested in using nonlinear optical techniques for characterizing their samples, they seldom have the necessary background to exploit these methods. Designed for nonspecialists, Second-Order Nonlinear Optical Characterization Techniques: An Introduction focuses on the potential of second-order nonlinear optics as a powerful characterization tool. Avoiding extensive mathematical details, this multidisciplinary book does not require a background in advanced mathematics or physics. After introducing linear optics from the perspective of polarizability and linear susceptibility, the authors cover incoherent second-harmonic generation. They then deal with the study of surfaces and interfaces, exploiting the intrinsic surface sensitivity of second-harmonic generation and sum-frequency generation. The final chapter discusses second-order imaging techniques, including confocal microscopy and two-photon excited fluorescence microscopy. Accessible to a wide range of scientists, this concise book stresses the reliability of nonlinear optical processes for probing surfaces and interfaces. Drawing on the insight offered in the text, scientists from many disciplines can now clearly understand and use second-order nonlinear optical methods.

Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters (Hardcover, 1998 ed.): Elmar Schreiber Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters (Hardcover, 1998 ed.)
Elmar Schreiber
R4,023 Discovery Miles 40 230 Ships in 18 - 22 working days

This book gives a detailed overview on this new and exciting field at the boundary of physics and chemistry.
Laser-induced ultrafast molecuar dynamics is presented for many textbook-like examples of model molecules and clusters.
Experimental results on phenomena like wave packet propagation, ultrafast photodissociation and femtosecond structural redistribution are presented and described theoretically.

Handbook of Optical Metrology - Principles and Applications (Paperback): Toru Yoshizawa Handbook of Optical Metrology - Principles and Applications (Paperback)
Toru Yoshizawa
R2,638 Discovery Miles 26 380 Ships in 10 - 15 working days

The field of optical metrology offers a wealth of both practical and theoretical accomplishments, and can cite any number of academic papers recording such. However, while several books covering specific areas of optical metrology do exist, until the pages herein were researched, written, and compiled, the field lacked for a comprehensive handbook, one providing an overview of optical metrology that covers practical applications as well as fundamentals. Carefully designed to make information accessible to beginners without sacrificing academic rigor, the Handbook of Optical Metrology: Principles and Applications discusses fundamental principles and techniques before exploring practical applications. With contributions from veterans in the field, as well as from up-and-coming researchers, the Handbook offers 30 substantial and well-referenced chapters. In addition to the introductory matter, forward-thinking descriptions are included in every chapter that make this a valuable reference for all those involved with optical metrology.

Astronomical Measurement - A Concise Guide (Hardcover, 2014 ed.): Andy Lawrence Astronomical Measurement - A Concise Guide (Hardcover, 2014 ed.)
Andy Lawrence
R2,339 Discovery Miles 23 390 Ships in 10 - 15 working days

This book on astronomical measurement takes a fresh approach to teaching the subject. After discussing some general principles, it follows the chain of measurement through atmosphere, imaging, detection, spectroscopy, timing, and hypothesis testing. The various wavelength regimes are covered in each section, emphasising what is the same, and what is different. The author concentrates on the physics of detection and the principles of measurement, aiming to make this logically coherent.
The book is based on a short self contained lecture course for advanced undergraduate students developed and taught by the author over several years.

Theory of Optical Processes in Semiconductors - Bulk and Microstructures (Hardcover, New): P.K. Basu Theory of Optical Processes in Semiconductors - Bulk and Microstructures (Hardcover, New)
P.K. Basu
R6,560 Discovery Miles 65 600 Ships in 18 - 22 working days

Semiconductor optelectronic devices are at the heart of all information generation and processing systems and are likely to be essential components of future optical computers. With more emphasis on optoelectronics and photonics in graduate programmes in physics and engineering, there is a need for a text providing a basic understanding of the important physical phenomena involved. Such a training is necessary for the design, optimization and search for new materials, devices, and application areas. This book provides a simple quantum mechanical theory of important optical processes, i.e., band-to- band, intersubband and excitonic absorption and recombination in bulk, quantum wells, wires, dots, superlattices and strained layers including electro-optic effects. The classical theory of absorption, quantization of radiation, and band picture based on k.p perturbation has been included to provide the necessary background. Prerequisites for the book are a knowledge of quantum mechanics and solid state theory. Problems have been set at the end of each chapter, some of which may guide the reader to study processes not covered in the book. This book is intended for graduate students in ph

Laser-Plasma Interactions (Paperback): Dino A. Jaroszynski, R.A. Bingham, R.A. Cairns Laser-Plasma Interactions (Paperback)
Dino A. Jaroszynski, R.A. Bingham, R.A. Cairns
R2,343 Discovery Miles 23 430 Ships in 10 - 15 working days

A Solid Compendium of Advanced Diagnostic and Simulation Tools Exploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three applications of intense fields in plasma: inertial fusion, wakefield accelerators, and advanced radiation sources. Collecting contributions from a host of international experts, the book provides a thorough grounding in the fundamental concepts of the interaction of electromagnetic radiation with matter, before moving on to selected advanced topics from the field. It describes state-of-the-art diagnostic tools and experimental techniques used to study laser-plasma interactions as well as simulation tools for modeling these interactions. With a focus on current research trends, this book guides readers to the brink of the most stimulating challenges in the field. It also gives readers an appreciation of the underlying phenomena linking several applications.

Photonic Network-on-Chip Design (Hardcover, 2012): Keren Bergman, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, Gilbert... Photonic Network-on-Chip Design (Hardcover, 2012)
Keren Bergman, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, Gilbert Hendry
R4,121 R3,320 Discovery Miles 33 200 Save R801 (19%) Ships in 10 - 15 working days

This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting the reader with all the issues in the design space, the discussion concludes with design automation techniques, supplemented by provided software.

Laser Beam Shaping - Theory and Techniques, Second Edition (Paperback, 2nd edition): Fred M. Dickey Laser Beam Shaping - Theory and Techniques, Second Edition (Paperback, 2nd edition)
Fred M. Dickey
R3,124 Discovery Miles 31 240 Ships in 10 - 15 working days

Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.

Near Field Optics - Proceedings of the NATO Advanced Research Workshop, Arc-et-Senans, France, October 26-28, 1992 (Hardcover):... Near Field Optics - Proceedings of the NATO Advanced Research Workshop, Arc-et-Senans, France, October 26-28, 1992 (Hardcover)
Dieter W. Pohl, Daniel Courjon
R1,473 Discovery Miles 14 730 Ships in 18 - 22 working days

Scanning near-field optical microscopy (SNOM, also known as NSOM) is a new local probe technique with a resolving power of 10--50 nm. Not being limited by diffraction, near-field optics (NFO) opens new perspectives for optical characterization and the understanding of optical phenomena, in particular in biology, microelectronics and materials science. SNOM, after first demonstrations in '83/'84, has undergone a rapid development in the past two to four years. The increased interest has been largely stimulated by the wealth of optical properties that can be investigated and the growing importance of characterization on the nanometer scale in general. Examples include the use of fluorescence, birefrigence and plasmon effects for applications in particular in biology, microelectronics and materials science, to name just a few. This volume emerged from the first international meeting devoted exclusively to NFO, and comprises a complete survey of the 1992 activities in the field, in particular the variety of instrumental techniques that are currently being explored, the demonstration of the imaging capabilities as well as theoretical interpretations - a highly nontrivial task. The comprehensive collection of papers devoted to these and related subjects make the book a valuable tool for anybody interested in near-field optics.

High-k Gate Dielectric Materials - Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)... High-k Gate Dielectric Materials - Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) (Paperback)
Reshmi Maity, Srimanta Baishya, Niladri Pratap Maity
R2,459 Discovery Miles 24 590 Ships in 10 - 15 working days

This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore's law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working structure and modeling. This timely volume will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology.

Nanostructured Gas Sensors - Fundamentals, Devices, and Applications (Hardcover): Ankur Gupta, Gulshan Verma Nanostructured Gas Sensors - Fundamentals, Devices, and Applications (Hardcover)
Ankur Gupta, Gulshan Verma
R3,391 Discovery Miles 33 910 Ships in 10 - 15 working days

Creates a wide-ranging knowledge base on gas sensor design and fabrication work as applied to industrial and hazardous sectors Provides restructured literature for researchers and academicians working in the field of design and fabrication of gas sensors. Delivers state-of-the-art work going on in the domain, including micro- and nano-sensors Covers the whole range of gas-sensing aspects, from basics, synthesis, and processing to characterization, testing, and application development Serves as a ready reckoner with a wealth of information to aspiring graduate and postdoctoral researchers engaged in the gas-sensing domain

High-Speed Photonics Interconnects (Paperback): Lukas Chrostowski, Krzysztof Iniewski High-Speed Photonics Interconnects (Paperback)
Lukas Chrostowski, Krzysztof Iniewski
R2,650 Discovery Miles 26 500 Ships in 10 - 15 working days

Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed Photonics Interconnects explores some of the groundbreaking technologies and applications that are based on photonics interconnects. From the Evolution of High-Speed I/O Circuits to the Latest in Photonics Interconnects Packaging and Lasers Featuring contributions by experts from academia and industry, the book brings together in one volume cutting-edge research on various aspects of high-speed photonics interconnects. Contributors delve into a wide range of technologies, from the evolution of high-speed input/output (I/O) circuits to recent trends in photonics interconnects packaging. The book discusses the challenges associated with scaling I/O data rates and current design techniques. It also describes the major high-speed components, channel properties, and performance metrics. The book exposes readers to a myriad of applications enabled by photonics interconnects technology. Learn about Optical Interconnect Technologies Suitable for High-Density Integration with CMOS Chips This richly illustrated work details how optical interchip communication links have the potential to fully leverage increased data rates provided through complementary metal-oxide semiconductor (CMOS) technology scaling at suitable power-efficiency levels. Keeping the mathematics to a minimum, it gives engineers, researchers, graduate students, and entrepreneurs a comprehensive overview of the dynamic landscape of high-speed photonics interconnects.

Laser Modeling - A Numerical Approach with Algebra and Calculus (Paperback): Mark Steven Csele Laser Modeling - A Numerical Approach with Algebra and Calculus (Paperback)
Mark Steven Csele
R2,658 Discovery Miles 26 580 Ships in 10 - 15 working days

Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text: Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system Describes the technique and technology of Q-switching and provides a simple model for predicting output power Addresses non-linear optics and supplies a simple model for calculating optimal crystal length Examines common laser systems, answering basic design questions and summarizing parameters Includes downloadable Microsoft (R) Excel (TM) spreadsheets, allowing models to be customized for specific lasers Don't let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.

Laser Safety - Tools and Training, Second Edition (Paperback, 2nd edition): Ken Barat Laser Safety - Tools and Training, Second Edition (Paperback, 2nd edition)
Ken Barat
R2,680 Discovery Miles 26 800 Ships in 10 - 15 working days

New chapters and updates highlight the second edition of Laser Safety: Tools and Training. This text provides background information relating to lasers and laser safety, and examines the components of laser work and laser safety from a different perspective. Written by a working laser safety officer, the book considers ways to keep users, as well as those around them, safe. The author encourages readers to think beyond protective eyewear. As it relates to safety, he determines that if eyewear is required, then the laser system is not ideal. This book factors in optics, the vibration elements of the optical table, the power meter, and user training, elements that are not commonly considered in the context of laser safety. It presents ways for users to evaluate the hazards of any laser procedure and ensure that they are following documented laser safety standards. The material serves as a fundamental means or road map for laser users seeking to utilize the safest system possible. What's New in the Second Edition: The second edition provides an inclusion of the Z136.8 Research Laser Standard, and offers updates and an explanation of eye exposure limits (MPE), presents new cases studies, and presents practical example images. It includes coverage of, laser lab design lessons, addresses user facility challenges and laser disposal. Presents case studies of real accidents, preventive measures, and templates for documenting potential laser risks and attendant safety measures Reviews factors often overlooked when one is setting up a laser lab Demonstrates how to investigate a laser incident This text which includes fundamental laser and laser safety information, as well as critical laser use information, is appropriate for both the novice and the seasoned professional.

Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies (Paperback): Krzysztof Iniewski Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies (Paperback)
Krzysztof Iniewski
R2,585 Discovery Miles 25 850 Ships in 10 - 15 working days

Light on physics and math, with a heavy focus on practical applications, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies discusses the developments necessary to realize the growth of truly integrated sensors for use in physical, biological, optical, and chemical sensing, as well as future micro- and nanotechnologies. Used to pick up sound, movement, and optical or magnetic signals, portable and lightweight sensors are perpetually in demand in consumer electronics, biomedical engineering, military applications, and a wide range of other sectors. However, despite extensive existing developments in computing and communications for integrated microsystems, we are only just now seeing real transformational changes in sensors, which are critical to conducting so many advanced, integrated tasks. This book is designed in two sections-Optical and Acoustic Sensors and Magnetic and Mechanical Sensors-that address the latest developments in sensors. The first part covers: Optical and acoustic sensors, particularly those based on polymer optical fibers Potential of integrated optical biosensors and silicon photonics Luminescent thermometry and solar cell analyses Description of research from United States Army Research Laboratory on sensing applications using photoacoustic spectroscopy Advances in the design of underwater acoustic modems The second discusses: Magnetic and mechanical sensors, starting with coverage of magnetic field scanning Some contributors' personal accomplishments in combining MEMS and CMOS technologies for artificial microsystems used to sense airflow, temperature, and humidity MEMS-based micro hot-plate devices Vibration energy harvesting with piezoelectric MEMS Self-powered wireless sensing As sensors inevitably become omnipresent elements in most aspects of everyday life, this book assesses their massive potential in the development of interfacing applications for various areas of product design and sciences-including electronics, photonics, mechanics, chemistry, and biology, to name just a few.

Solar Radiation - Practical Modeling for Renewable Energy Applications (Paperback): Daryl Ronald Myers Solar Radiation - Practical Modeling for Renewable Energy Applications (Paperback)
Daryl Ronald Myers
R2,649 Discovery Miles 26 490 Ships in 10 - 15 working days

Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation measurements. It also examines the accuracy of solar radiation modeling and measurements. The majority of the book describes the most popular simple models for estimating broadband and spectral solar resources available to flat plate, concentrating, photovoltaic, solar thermal, and daylighting engineering designs. Sufficient detail is provided for readers to implement the models in assorted development environments. Covering the nuts and bolts of practical solar radiation modeling applications, this book helps readers translate solar radiation data into viable, real-world renewable energy applications. It answers many how-to questions relating to solar energy conversion systems, solar daylighting, energy efficiency of buildings, and other solar radiation applications.

Thin-Film Organic Photonics - Molecular Layer Deposition and Applications (Paperback): Tetsuzo Yoshimura Thin-Film Organic Photonics - Molecular Layer Deposition and Applications (Paperback)
Tetsuzo Yoshimura
R2,615 Discovery Miles 26 150 Ships in 10 - 15 working days

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dot-or molecule-by-molecule-growth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities. Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to: Photonics/electronics, particularly in optical interconnects used in computers Optical switching and solar energy conversion systems Bio/ medical photonics, such as photodynamic therapy Organic photonic materials, devices, and integration processes With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mineral Springs of North America…
J J (John Jennings) 1802- Moorman Hardcover R890 Discovery Miles 8 900
Encyclopedia of Medical Immunology…
Ian R. Mackay, Noel R. Rose, … Hardcover R11,694 Discovery Miles 116 940
What Really Happened In Wuhan
Sharri Markson Paperback R300 R268 Discovery Miles 2 680
Sepsis, An Issue of Critical Care…
R. Phillip Dellinger Hardcover R1,885 Discovery Miles 18 850
Nanotechnology Tools for Infections…
Alessandro Poma, Loris Rizzello Paperback R3,935 Discovery Miles 39 350
Precarities of 21st Century Childhoods…
Michael O'Loughlin, Carol Owens, … Hardcover R2,855 Discovery Miles 28 550
Diversity and Direction in…
Fred Pine Hardcover R1,972 Discovery Miles 19 720
Proteomics Approaches to Unravel Virus…
Gisa Gerold Hardcover R4,172 Discovery Miles 41 720
Gross FACTopia! - Follow the Trail of…
Paige Towler Hardcover R368 R342 Discovery Miles 3 420
The Reign of Speech - On Applied…
Dries G. M. Dulsster Hardcover R2,410 Discovery Miles 24 100

 

Partners