![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
The book represents a study guide reciting theoretical basics of radar location and radio navigation systems of air and sea transport. This is the distinctive feature of this study guide. The study guide states the principal physics of radar location and radio navigation, main measuring methods of proper and relative movement parameters of an object, tactical and technical characteristics of radar location and radio navigation systems, including examining issues on radiofrequency signals detection and its parameters estimation against background and interference of different type, filtering, combined detection and rating of signals, signals resolution and classification. The structural and functioning principles of the current and advanced radar location and radio navigation systems of air and sea transport are represented in the study guide with an adequate completeness. The study guide features the result of years long lecturing on radar location and radio navigation theoretical courses at the Moscow State Technical University of Civil Aviation and G.I.Nevelskiy Maritime State Technical Academy. The study guide is designated for students of radio-engineering specialties in area of air and sea transport. The study guide can be useful for radio engineers working in the field of air and maritime transport, and for graduate students and academic researchers as well.
"This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." -Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." -Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." -Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave's properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities.
"a detailed, cognizant account of numerous crucial aspects of optical microring resonators" - Amr S. Helmy, Professor of Electrical & Computer Engineering, University of Toronto "an excellent choice for gaining an insight into the vast potential of microring resonators" - Jalil Ali, Professor, Laser Center ISI-SIR, University of Technology, Malaysia "a thorough treatment... appeal[s] to a wide range of audiences" - L. Jay Guo, Professor of Electrical Engineering & Computer Science, The University of Michigan The field of microring resonator research has seen tremendous growth over the past decade, with microring resonators now becoming a ubiquitous element in integrated photonics technology. This book fills the need for a cohesive and comprehensive treatment of the subject, given its importance and the proliferation of new research in the field. The expert author has as an introductory guide for beginners as well as a reference source for more experienced researchers. This book aims to fulfill this need by providing a concise and detailed treatment of the fundamental concepts and theories that underpin the various applications. To appeal to as wide a readership as possible, major areas of applications of microring resonators will also be covered in depth.
This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting the reader with all the issues in the design space, the discussion concludes with design automation techniques, supplemented by provided software.
Scanning near-field optical microscopy (SNOM, also known as NSOM) is a new local probe technique with a resolving power of 10--50 nm. Not being limited by diffraction, near-field optics (NFO) opens new perspectives for optical characterization and the understanding of optical phenomena, in particular in biology, microelectronics and materials science. SNOM, after first demonstrations in '83/'84, has undergone a rapid development in the past two to four years. The increased interest has been largely stimulated by the wealth of optical properties that can be investigated and the growing importance of characterization on the nanometer scale in general. Examples include the use of fluorescence, birefrigence and plasmon effects for applications in particular in biology, microelectronics and materials science, to name just a few. This volume emerged from the first international meeting devoted exclusively to NFO, and comprises a complete survey of the 1992 activities in the field, in particular the variety of instrumental techniques that are currently being explored, the demonstration of the imaging capabilities as well as theoretical interpretations - a highly nontrivial task. The comprehensive collection of papers devoted to these and related subjects make the book a valuable tool for anybody interested in near-field optics.
This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore's law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working structure and modeling. This timely volume will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology.
Creates a wide-ranging knowledge base on gas sensor design and fabrication work as applied to industrial and hazardous sectors Provides restructured literature for researchers and academicians working in the field of design and fabrication of gas sensors. Delivers state-of-the-art work going on in the domain, including micro- and nano-sensors Covers the whole range of gas-sensing aspects, from basics, synthesis, and processing to characterization, testing, and application development Serves as a ready reckoner with a wealth of information to aspiring graduate and postdoctoral researchers engaged in the gas-sensing domain
First Published in 1998. Routledge is an imprint of Taylor & Francis, an informa company.
Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field
Covers synthesis, properties and applications of quantum dots Discusses the modern fabrication technologies, processing, nanostructure formation, and mechanisms of reinforcement of quantum dots-polymer nanocomposites Explores the properties of quantum dots-based polymer nanocomposites Discusses the biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites Reviews recent innovations, applications, opportunities, and future directions in quantum dots-based polymer nanocomposites
Discusses the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section Presents a single approach based on the M. Berry formula Describes the topological competition between different optical vortices in a superposition Demonstrates the stability of the topological charge to random phase distortions and insensitivity to amplitude distortions Contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space and the topological charge is preserved
ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.
Sometime between 1028 and 1038, Ibn al-Haytham completed his monumental optical synthesis, Kitab al-Manazir ("Book of Optics"). By no later than 1200, and perhaps somewhat earlier, this treatise appeared in Latin under the title De aspectibus. In that form it was attributed to a certain "Alhacen." These differences in title and authorial designation are indicative of the profound differences between the two versions, Arabic and Latin, of the treatise. In many ways, in fact, they can be regarded not simply as different versions of the same work, but as different works in their own right. Accordingly, the Arab author, Ibn al-Haytham, and his Latin incarnation, Alhacen, represent two distinct, sometimes even conflicting, interpretive voices. And the same holds for their respective texts. To complicate matters, "Alhacen" does not represent a single interpretive voice. There were at least two translators at work on the Latin text, one of them adhering faithfully to the Arabic original, the other content with distilling, even paraphrasing, the Arabic original. Consequently, the Latin text presents not one, but at least two faces to the reader. This two-volume critical edition represents fourteen years of work on Dr. Smith's part. Awarded the 2001 J. F. Lewis Award.
The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University's Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion, and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.
Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and present methods of phase unwrapping. The final chapter discusses experimental imperfections that are liable to adversely influence the accuracy of phase measurements. Responding to the push for the deployment of novel technologies and fast-evolving techniques, this book provides a framework for understanding various modern phase estimation methods. It also helps readers get a comparative view of the performance and limitations of the approaches.
Advances in laser technology over the last 10-15 years have stimulated study of the active control of quantum molecular dynamics. Lasers may used to generate external fields of varying intensity, phases, and spectral content, which then are used to alter the molecular dynamics of a system so as to generate more of a particular product. Control of reactions at this microscopic level is one of the hot areas of research in chemical physics. This book describes the current status of the theory of optical control of molecular dynamics
Discusses mainly fundamentals and applications of dynamic holography using photorefractive crystals and many different types of digital holography Covers developments in holography starting from photopolymer recording techniques to CMOS based digital holography Examines important applications of each topic like digital holographic microscopy, Real-Time/Time Average/Double exposure digital holographic interferometry, digital holographic photoelasticity for stress or strain measurements Discusses principles of Stokes/Correlation holography Includes homework problems and a solutions manual for adopting professors
Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.
This book presents an overview of the state of the art of the developing topic of nonlinear optics with contributions from leading experts in the field in China, ranging from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. In the past decade, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena. The growth of research in nonlinear optics is closely linked to the rapid technological advances that have occurred in related fields, such as ultra-fast phenomena and optical communications. Nonlinear-optics activities range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology. This book reviews the development of some nonlinear optics researches in China, not only the discovery of new principles, but also potential applications of nonlinear optics for various industries.
'Although the editors admit that they cannot present an unequivocal explanation for the strange resilience of KirchhoffaEURO (TM)s flawed theory, their book is an admirable effort to meet this challenge ... It is a concerted effort to resolve a persistent riddle in the history of physics - and an example of how expert knowledge from different specialties may be focused on a target of common interest.'ISIS JournalThe 1882 paper by the mathematical physicist Gustav Robert Kirchhoff on diffraction theory is still being discussed to this day, but has never been translated into English. This volume contains the first English translation of the Kirchhoff treatise, as well as background and commentary on it. Included are a biographical introduction to Kirchhoff's life, an analysis of the reception to Kirchhoff's paper through the ages, a discussion on why Kirchhoff's theory manages to produce accurate predictions in spite of being 'wrong', and views on the theory as well as its predecessor and subsequent developments. This anthology will make all English-speaking scientists, engineers, historians, and interested laymen aware of the great fecundity of Kirchhoff's thought and historical context.
Structured singular light is an ubiquitous phenomenon. It is not only created when light refracts at a water surface but can also be found in the blue daytime sky. Such light fields include a spatially varying amplitude, phase, or polarization, enabling the occurrence of optical singularities. As structurally stable units of the light field, these singularities are particularly interesting since they determine its topology. In this excellent book, the author presents a pioneering study of structured singular light, thereby contributing many original approaches. Especially in the field of polarization and its rich number of different types of singularities the book defines and drives a completely new field. The work demonstrates how to control complex polarization singularity networks and their propagation. Additionally, the author pioneers tightly focusing vectorial beams, also developing an urgently needed detection scheme for three-dimensional nanoscale polarization structures. She also studies classical spatial entanglement using structured light, introducing entanglement beating and paraxial spin-orbit-coupling. The book is hallmarked by its comprehensive and thorough way of describing a plethora of different approaches to structure light by amplitude, phase and polarization, as well as the important role of optical singularities.
Broadly tunable lasers continue to have a tremendous impact in many and diverse fields of science and technology. From a renaissance in laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Tunable Laser Applications describes the physics and architectures of widely applied tunable laser sources. Fully updated and expanded to address important advances in the science and technology, this Third Edition: Contains new chapters on tunable laser microscopy and tunable laser atomic vapor laser isotope separation Offers extended coverage of optical parametric oscillators and their application to atmospheric sensing, biomedicine, defense counter measures, microscopy, and spectroscopy Discusses exciting new applications in astronomy, defense R&D, medicine, and more Featuring fresh contributions from internationally recognized experts-including 100+ new pages and extensive reference listings-Tunable Laser Applications, Third Edition provides a timely account of the most promising tunable laser applications to date.
A Flash of Light is an intriguing book that starts at the beginning of time itself and then winds its way through a host of fascinating light related topics including the hues of aliens sunsets, the psychology of colour, and the chemistry of LCD screens. Written as part of a novel experiment, editors Mark Lorch and Andy Miah hatched a plan to collect a critical mass of academics in a room and charged them with writing a popular science book, under the watchful eye of the general public at the Manchester Science Festival. The result is an enlightening look into the science behind colour and light, encompassing biology, chemistry and physics and including simple and fun "try this at home" ideas to illustrate the concepts covered. Drawing on the experience of some of the UK's best science communicators, this book will appeal to anyone with an interest in science. Its pacey, witty and engaging tone provides illuminating insight into how and why we see the universe the way we do.
In last years increasing attention has been again devoted to interpretations of quantum theory. In the same time interesting quantum optical experiments have been performed using nonlinear optical processes, in particular frequency down conversion, which provided new information about nature of a photon on the basis of interference and correlation (coincidence) phenomena. Such single-photon and twin-photon effects of quantum optics provide new point of view of interpretations of quantum theory and new tests of its principles. The purpose of this book is to discuss these questions. To follow this goal we give brief reviews of principles of quantum theory and of quantum theory of measurement. As a fundamental theoretical tool the coherent state technique is adopted based on a general algebraic treatment, including the de scription of interaction of radiation and matter. Typical quantum behaviour of physical systems is exhibited by nonclassical optical phenomena, which can be examined using photon interferences and correlations. These phenomena are closely related to violation of various classical inequalities and Bell's in equalities. The most important part of this book discusses quantum optical experiments supporting quantum theory. This book may be considered as a continuation of previous monographs by one of the authors on Coherence of Light (Van Nostrand Reinhold, London 1972, second edition D. Reidel, Dordrecht 1985) and on Quantum Statistics of Linear and Nonlinear Optical Phenomena (D. Reidel, Dordrecht 1984, second edition Kluwer, Dordrecht 1991), which may serve as a preparation for reading this book."
The theory and practice of the non-linear optics of silicon are inextricably linked with a variety of areas of solid state physics, particularly semiconductor physics. However, the current literature linking these fields is scattered across various sources and is lacking in depth. Second Order Non-linear Optics of Silicon and Silicon Nanostructures describes the physical properties of silicon as they apply to non-linear optics while also covering details of the physics of semiconductors. The book contains six chapters that focus on: The physical properties and linear optics of silicon Basic theoretical concepts of reflected second harmonics (RSH) The authors' theory of the generation of RSH at the non-linear medium-linear medium interface An analytical review of work on the non-linear optics of silicon The results of non-linear optical studies of silicon nanostructures A theory of photoinduced electronic processes in semiconductors and their influence on RSH generation The book also includes methodological problems and a significant amount of reference data. It not only reflects the current state of research but also provides a single, thorough source of introductory information for those who are becoming familiar with non-linear optics. Second Order Non-linear Optics of Silicon and Silicon Nanostructures is a valuable contribution to the fields of non-linear optics, semiconductor physics, and microelectronics, as well as a useful resource for a wide range of readers, from undergraduates to researchers. |
You may like...
Time Series Analysis and Adjustment…
Haim Y. Bleikh, Warren L. Young
Hardcover
R4,345
Discovery Miles 43 450
IFRS For Small And Medium-Sized Entities…
Thomas Gutmayer, Caroline Dubourg, …
Paperback
R503
Discovery Miles 5 030
GAAP: Graded Questions - Questions on…
Dave Kolitz, Cathrynne Service
Paperback
GAAP Handbook 2024/2025: Volume 1 and 2…
W. Badenhorst, L. Kotze, …
Paperback
R1,924
Discovery Miles 19 240
Performing Internal Audit Engagements
R. du Bruyn, K. Plant, …
Paperback
R1,013
Discovery Miles 10 130
|