![]()  | 
		
			 Welcome to Loot.co.za!  
				Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
			 | 
		
 Your cart is empty  | 
	||
| 
				 Books > Science & Mathematics > Physics > Optics (light) 
 A Practical Guide to Lens Design focuses on the very detailed practical process of lens design. Every step from setup specifications to finalizing the design for production is discussed in a straight forward, tangible way. Design examples of several widely used modern lenses are provided. Optics basics are introduced and basic functions of Zemax are described. Zemax will be used throughout the book. 
 Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for further work in the lamp industry. Some of the earliest work has been applied in the laser industry to develop new types of discharge lasers. These include nitrogen-gas lasers and the rare gas (excimer) lasers. Previous work on lamps may also be applied in the development of new types of lasers. 
 Praise for prior editions "an excellent treatise of thin film coatings, explaining how to produce all sorts of different filters selected according to the function they are required to play... an indispensable text for every filter manufacturer and user and an excellent guide for students." Contemporary Physics "essential reading for all those involved in the design, manufacture, and application of optical coatings" Materials World "a must-have addition to the library of any optical thin-film theorist or practitioner" SVC News This book is quite simply the Bible for the field of optical thin films. It gives the most complete introduction to thin film optical coatings addressed to manufacturers and users alike. This fifth edition offers a complete update on current design, manufacture, performance, and applications. New topics include absorbers and coherent perfect absorbers, photonic crystals, and metamaterials for optical coating. The author has also made substantial additions on scattering, composite materials, wire grid polarizers, laser damage, and applications. H. Angus Macleod is President of Thin Film Center Inc., in Tucson, Arizona, and Professor Emeritus of Optical Sciences Center at the University of Arizona. His professional honors include a Gold Medal from SPIE, the Esther Hoffman Beller Medal from the Optical Society of America, and the Nathaniel H. Sugerman Memorial Award from the Society of Vacuum Coaters. 
 This book shows there is a profound connection between information and entropy. Without this connection, information would be more difficult to apply to science. This book covers the connection and the application to modern optics and radar imaging. It shows that there exists a profound relationship between Einstein's relativity theory and Schroeinger's quantum mechanics, by means of the uncertainty principle. In due of the uncertainty relation, this book shows that every bit of information takes time and energy to transfer, to create and to observe. The new edition contains 3 new chapters on radar imaging with optics, science in the myth of information, and time and the enigma of space. 
 Optical Properties of Functional Polymers and Nano Engineering Applications provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this comprehensive text: Considers the advantages of the liquid gradient refractive index (L-GRIN) lenses over the conventional solid lenses Explores the electrochemistry of photorefractive polymers, the molecular structure of commonly used polymers, and various 3D holographic displays Discusses gene detection using the optical properties of conjugated polymers Highlights the physics of fluorescence in photoluminescent polymers, and energy and electron transfer mechanisms Introduces conventional polymer ion sensors based on the optical sensors of conjugated polymers prepared by click chemistry reactions Explains colorimetric visual detection of ions by donor-acceptor chromophores Describes optical sensors based on fluorescent polymers and for the detection of explosives and metal ion analytes Addresses holographic polymer-dispersed liquid crystal technology, its optical setups, and its applications in organic lasers Presents cutting-edge research on electrochromic devices, along with new concepts, prototypes, commercial products, and future prospects Demonstrates new techniques for creating nanoscale morphologies through self-assembly, which affect the optical properties of the functional polymers Optical Properties of Functional Polymers and Nano Engineering Applications emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles. 
 Advanced Electromagnetic Computation with MATLAB (R) discusses commercial electromagnetic software, widely used in the industry. Algorithms of Finite Differences, Moment method, Finite Element method and Finite Difference Time Domain method are illustrated. Hand-computed simple examples and MATLAB-coded examples are used to explain the concepts behind the algorithms. Case studies of practical examples from transmission lines, waveguides, and electrostatic problems are given so students are able to develop the code and solve the problems. Two new chapters including advanced methods based on perturbation techniques and three dimensional finite element examples from radiation scattering are included. 
 A collection of prestigious postgraduate lectures, Nonlinear Dynamics and Spatial Complexity in Optical Systems reviews developments in the theory and practice of nonlinear dynamics and structural complexity, and explores modern-day applications in nonlinear optics. The book addresses systems including both singlemode and multimode lasers, bistable and multistable devices, optical fibers, counter-propagating beam interactions, nonlinear mixing, and related optical phenomena. 
 The first ICXOM congress held in Cambridge was the brain-child of Dr. Ellis Cosslett, founder of the Electron Optics Section of the Cavendish Laboratory. Dr. Cosslett pioneered research in x-ray optics and microanalysis and retained a close interest in all subject applications for this area of research, including physics, materials science, chemistry, and biology. X-Ray Optics and Microanalysis 1992 was held in his memory. At a special symposium, friends and colleagues reviewed the present status of research in x-ray optics and microanalysis. S.J. Pennycook of Oak Ridge National Laboratory, D.B. Williams of Lehigh University, J.A. Venables et al. of Arizona State University and Sussex University, and C. Jacobsen et al. of SUNY, Stony Brook are among the researchers whose papers are included in this volume. 
 This practical reference offers state-of-the-art coverage of speckle metrology and its value as a measuring technique in industry.;Examing every important aspect of the field, Speckle Metrology: surveys the origin of speckle displacement and decorrelation; presents procedures for deformation analysis and shape measurement of rough objects; explains particle image velocimetry (PIV), the processing of PIV records, and the design requirements of PIV equipment; discusses the applications of white light speckle methods and the production of artificial speckles; describes the measurement of surface roughness with laser speckles and polychromatic speckles; illustrates semiautomatic and automatic methods for the analysis of Young's fringes; calculates the variation of Young's fringes with the change in the microrelief of the rough surface; and explicates hololenses for imaging and provides design details with aberration corrections for hololense systems.;With over 1500 literature citations, tables, figures and display equations, Speckle Metrology is a resource for students and professionals in the fields of optical, mechanical, electrical and electronics engineering; applied physics; and stress analysis. 
 Expensive, delicate, and difficult to operate, femtosecond lasers have already won two Nobel Prizes and created multi-billion dollar industries. As these lasers break out of laboratories for use in real-world large-scale applications, the number of people using them increases. This book provides a fresh perspective on femtosecond lasers, discussing how they are soon to become a universal light source, spanning any timescale and generating any wavelength of light. Starting from the basics of light itself, this book presents in an everyday manner, with clear illustrations and without formulas, what makes this class of lasers so versatile and the future of many more applications. Many of the subjects covered in this book are described in plain words for the first time. 
 Presents the statistical analysis of morphological filters and their automatic optical design, the development of morphological features for image signatures, and the design of efficient morphological algorithms. Extends the morphological paradigm to include other branches of science and mathematics.;This book is designed to be of interest to optical, electrical and electronics, and electro-optic engineers, including image processing, signal processing, machine vision, and computer vision engineers, applied mathematicians, image analysts and scientists and graduate-level students in image processing and mathematical morphology courses. 
 In tribute to the memory of Sergei Akhmanov, a pioneer in the field, Frontiers in Nonlinear Optics presents an overview of quantum electronics and nonlinear optics. The contributors, world leaders in this field, provide up-to-date surveys and current trends to ensure comprehensive coverage in all aspects of nonlinear optics. This fascinating collection is necessary reading both for researchers entering the field and for established researchers in nonlinear optics. 
 Quantitative Microbeam Analysis provides a comprehensive introduction to the field of quantitative microbeam analysis (MQA). MQA is a technique used to analyze subatomic quantities of materials blasted from a surface by a laser or particle beam, providing information on the structure and composition of the material. Contributed to by international experts, the book is unique in the breadth of microbeam analytical techniques covered. For each technique, it develops the theoretical background, discusses practical details relating to choice of equipment, and describes the current advances. The book highlights developments relating to Auger electron spectroscopy in scanning electron microscopes and transmission electron microscopes and advances in surface analytical imaging and accelerated ion beam-surface interactions. 
 This book gathers selected and expanded contributions presented at the 4th Symposium on Space Optical Instruments and Applications, which was held in Delft, the Netherlands, on October 16-18, 2017. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications. 
 Hierarchic Electrodynamics and Free Electron Lasers: Concepts, Calculations, and Practical Applications presents intriguing new fundamental concepts in the phenomenon of hierarchical electrodynamics as a new direction in physics. Concentrating on the key theory of hierarchic oscillations and waves, this book focuses on the numerous applications of nonlinear theory in different types of high-current Free Electron Lasers (FEL), including their primary function in the calculation methods used to analyze various multi-resonant, multi-frequency nonlinear FEL models. This is considered the first book to: Completely and systematically describe the foundation of hierarchical electrodynamics as a new direction of physics Fully represent the physics of high-current FEL-and associated models-from the hierarchic oscillation wave perspective Cover the multi-harmonic nonlinear theory of new types of electronic devices, such as plasma-beam and two-stream FEL Formulate and substantiate the concept of cluster femtosecond FEL Analyze practical prospects for a new generation of a global "Star Wars" strategic defense systems These subjects involve a wide range of disciplines. Using numerous real-world examples to illustrate information and concepts, the book offers a mathematical foundation to explore FEL applications as well as analyze hierarchic plasma-like electrodynamic systems and femto-second clusters of electromagnetic energy. Assembling fragmented concepts from existing literature, the author re-examines classic approaches in order to develop new insights and achieve scientific breakthroughs. 
 Optoelectronic devices are now ubiquitous in our daily lives, from light emitting diodes (LEDs) in many household appliances to solar cells for energy. This handbook shows how we can probe the underlying and highly complex physical processes using modern mathematical models and numerical simulation for optoelectronic device design, analysis, and performance optimization. It reflects the wide availability of powerful computers and advanced commercial software, which have opened the door for non-specialists to perform sophisticated modeling and simulation tasks. The chapters comprise the know-how of more than a hundred experts from all over the world. The handbook is an ideal starting point for beginners but also gives experienced researchers the opportunity to renew and broaden their knowledge in this expanding field. 
 Fundamentals and Basic Optical Instruments includes thirteen chapters providing an introductory guide to the basics of optical engineering, instrumentation, and design. Topics include basic geometric optics, basic wave optics, and basic photon and quantum optics. Paraxial ray tracing, aberrations and optical design, and prisms and refractive optical components are included. Polarization and polarizing optical devices are covered, as well as optical instruments such as telescopes, microscopes, and spectrometers. 
 Compared to traditional electrical filaments, arc lamps, and fluorescent lamps, solid-state lighting offers higher efficiency, reliability, and environmentally friendly technology. LED / solid-state lighting is poised to take over conventional lighting due to cost savings there is pretty much no debate about this. In response to the recent activity in this field, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays covers a range of solid-state devices, technologies, and materials used for lighting and displays. It also examines auxiliary but critical requirements of efficient applications, such as modeling, thermal management, reliability, and smart lighting. The book discusses performance metrics of LEDs such as efficiency, efficacy, current voltage characteristics, optical parameters like spectral distribution, color temperature, and beam angle before moving on to luminescence theory, injection luminescence, radiative and non-radiative recombination mechanisms, recombination rates, carrier lifetimes, and related topics. This lays down the groundwork for understanding LED operation. The book then discusses energy gaps, light emission, semiconductor material, special equipment, and laboratory facilities. It also covers production and applications of high-brightness LEDs (HBLEDs) and organic LEDs (OLEDs). LEDs represent the landmark development in lighting since the invention of electric lighting, allowing us to create unique, low-energy lighting solutions, not to talk about their minor maintenance expenses. The rapid strides of LED lighting technology over the last few years have changed the dynamics of the global lighting market, and LEDs are expected to be the mainstream light source in the near future. In a nutshell, the book traces the advances in LEDs, OLEDs, and their applications, and presents an up-to-date and analytical perspective of the scenario for audiences of differen 
 Professor Yurii A. Anan'ev has a long-standing international reputation for his publications on optical beams and resonators. Now many of his contributions will be readily available for the first time in a book. The generation of maximum power, minimum divergence beams from laser resonators is probably the most important topic in quantum electronics and optics today. The only book of its kind, Laser Resonators and the Beam Divergence Problem covers not only the theory, but also the applications of resonators to real systems as opposed to idealized models. Each rigorous examination of an optical configuration is accompanied by a detailed discussion of its associated applications and of the considerations for the user in practical work. The book contains a wealth of information on the developments in resonator technology, including much material previously unavailable outside the Soviet Union. It is an essential reference source to every researcher in laser science and technology. 
 Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power E/E is typically about 10-4, is mandatory. High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts covers the latest developments in X-ray light sources, detectors, crystal spectrometers, and photon-in-photon-out core level spectroscopy techniques. It also addresses photon-in-photon-out core level spectroscopy applications for the study of catalytic systems, highlighting hard X-ray measurements primarily due to probe high penetration, enabling in situ studies. This first-of-its-kind book: Discusses high-resolution X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) in terms of time-resolved and surface enhancement Supplies an understanding of catalytic reactivity essential for capitalizing on core level X-ray spectroscopy at fourth-generation light sources (XFELs) Describes all spectrometers developed to perform core level X-ray spectroscopy, considering the advantages and disadvantages of each Details methods to elucidate aspects of catalysts under working conditions, such as active sites and molecule adsorption Introduces theoretical calculations of spectra and explores biological as well as heterogeneous catalysts Complete with guidelines and warnings for the use of this type of spectroscopy, High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts provides a comprehensive overview of the current state of this exciting field. 
 Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction codes, and network, thermal, and mechanical modeling for equipment platform design. Illustrating how and why network developers make technical decisions, this book takes a practical engineering approach to systematically assess the network as a whole-from transmission to switching. Emphasizing a uniform bibliography and description of standards, it explores existing technical developments and the potential for projected alternative architectural paths, based on current market indicators. The author characterizes new device and equipment advances not just as quality improvements, but as specific responses to particular technical market necessities. Analyzing design problems to identify potential links and commonalities between different parts of the system, the book addresses interdependence of these elements and their individual influence on network evolution. It also considers power consumption and real estate, which sometimes outweigh engineering performance data in determining a product's success. To clarify the potential and limitations of each presented technology and system analysis, the book includes quantitative data inspired by real products and prototypes. Whenever possible, it applies mathematical modeling to present measured data, enabling the reader to apply demonstrated concepts in real-world situations. Covering everything from high-level architectural elements to more basic component physics, its focus is to solve a problem from different perspectives, and bridge descriptions of well-consolidated solutions with newer research trends. 
 
High Temperature Superconductivity provides a broad survey of high
temperature superconductivity, discussing the adaptations of
experimental and theoretical techniques and methods that take
advantage of the revolutionary properties of high temperature
superconductors. Distinguished engineers, chemists, and
experimental and theoretical physicists introduce their own
particular area of the field before going on to explain current
theories and techniques.  
 
In the tradition of its predecessors, this volume comprises a
selection of the best papers presented at the Ninth International
Symposium on Applications of Laser Techniques to Fluid Mechanics,
held in Lisbon in July 2000. 
 The importance of photonics in science and engineering is widely recognized and will continue to increase through the foreseeable future. In particular, applications in telecommunications, medicine, astronomy, industrial sensing, optical computing and signal processing continue to become more diverse. Essentials of Photonics, Second Edition describes the entire range of photonic principles and techniques in detail. Previously named Essentials of Optoelectronics, this newly named second edition of a bestseller felects changes that have occurred in this field. The book presents a new approach that concentrates on the physical principbestles, demonstrating their interdependence, and developing them to explain more complex phenomena. It gives insight into the underlying physical processes in a way that is readable and easy to follow, as well as entirely self-contained. Written by an author with many years of experience in teaching and research, this book includes a detailed treatment of lasers, waveguides (including optical fibres), modulators, detectors, non-linear optics and optical signal processing. This new edition is brought up-to-date with additional sections on photonic crystal fibres, distributed optical-fibre sensing, and the latest developments in optical-fibre communications. 
 This work provides a perspective on the creation of a scientific discipline. The reader is led to meet the actual people who have contributed to this field and know their trials as well as breakthroughs. From 1800 to 1930, Brand preserves the thread of scientific thought and activity through six generations of working scientists.  | 
			
				
	 
 
You may like...
	
	
	
		
			
				Pandemic Legalities - Legal Responses to…
			
			
		
	
	 
	
		
			Kathleen Lahey, Katie Bales, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,165
				
				Discovery Miles 21 650
			
			
		
	 
	
	
	
	
		
			
				Report on Bow River Power and Storage…
			
			
		
	
	 
	
		
			M C (Murray Colder) D 1951 Hendry, Canada Dominion Water Power Branch
		
		Hardcover
		
		
			
				
				
				
				
				
				R1,017
				
				Discovery Miles 10 170
			
			
		
	 
	
	
	
	
		
			
			
				Signal Transforms in Dynamic…
			
		
	
	 
	
	
	
	
	
	
		
			Edward Layer, Krzysztof Tomczyk
		
		Hardcover
		
		
			
				
				
				
				
				
					 
	
  |