![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
This book proposes and reviews comprehensive strategies based on optical electronics for constructing optoelectronic systems with minimized optics excess. It describes the core technologies such as self-organized optical waveguides based on self-organized lightwave network (SOLNET), three-dimensional optical circuits, material-saving heterogeneous thin-film device integration process (PL-Pack with SORT), and high-speed/small-size light modulators and optical switches. The book also presents applications of optical electronics, including integrated optical interconnects within computers and massive optical switching systems utilizing three-dimensional self-organized optical circuits, solar energy conversion systems, and bio/medical photonics such as cancer therapy.
Light on physics and math, with a heavy focus on practical applications, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies discusses the developments necessary to realize the growth of truly integrated sensors for use in physical, biological, optical, and chemical sensing, as well as future micro- and nanotechnologies. Used to pick up sound, movement, and optical or magnetic signals, portable and lightweight sensors are perpetually in demand in consumer electronics, biomedical engineering, military applications, and a wide range of other sectors. However, despite extensive existing developments in computing and communications for integrated microsystems, we are only just now seeing real transformational changes in sensors, which are critical to conducting so many advanced, integrated tasks. This book is designed in two sections Optical and Acoustic Sensors and Magnetic and Mechanical Sensors that address the latest developments in sensors. The first part covers:
The second discusses:
As sensors inevitably become omnipresent elements in most aspects of everyday life, this book assesses their massive potential in the development of interfacing applications for various areas of product design and sciences including electronics, photonics, mechanics, chemistry, and biology, to name just a few.
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscopy and then moves on to examine the background of the orientation method of colloid suspensions in a nematic host. It explores the orientation procedure itself, experimental design, and mathematical tools for the interpretation of the IR spectroscopic patterns. Next, the authors describe the structural elucidation of inorganic and organic compounds and glasses. Finally, they discuss applications in pharmaceutical analysis and the chemistry of dyes. Filled with more than 140 illustrations along with a color insert, the book explains both the scope of the polarized IR spectroscopy method as well as its limitations. A powerful source of information not only for specialists in IR spectroscopy, but also for those working in the field of structural analysis, this volume moves the field closer to developing an inherently classical method for the structural characterization of compounds.
This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties, and working principles. Key Features: * Offers a complete update of the original, bestselling work, including many brand-new chapters. * Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. * Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. * Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. * Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
This informative book focuses on newly developed functional materials and their applications for electronic and spintronic devices. Electronic devices have become a part of our daily modern life, involving mobile phones, data storage, computers, and satellites, and there is relentless growth in microelectronics. This volume covers the topics of oxide materials for electronics devices, new materials, and new properties, especially in newly developed research areas, such as oxide magnetic semiconductors and two-dimensional electron gas. Key features: Emphasizes functional materials for electronic devices, including two-dimensional materials, two-dimensional electron gas, multiferroic materials, memory materials, sensor materials, and spintronic materials. Describes the basics as well as new developments of these functional materials and devices.
The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superconductivity towards high temperatures, the secondary objective is to achieve a better understanding of the vortices pinning. This book is targeted at researchers and graduate students of fundamental and engineering sciences.
This book focuses on the development and implementation of the longitudinal, angular and frequency controls of the Advanced Virgo detector, both from the simulation and experimental point of view, which contributed to Virgo reaching a sensitivity that enabled it to join the LIGO-Virgo O2 run in August 2017. This data taking was very successful, with the first direct detection of a binary black hole merger (GW170814) using the full network of three interferometers, and the first detection and localization of a binary neutron star merger (GW170817). The second generation of gravitational wave detector, Advanced Virgo, is capable of detecting differential displacements of the order of 10-21m. This means that it is highly sensitive to any disturbance, including the seismic movement of the Earth. For this reason an active control is necessary to keep the detector in place with sufficient accuracy.
This concise and carefully developed text offers a reader friendly guide to the basics of time-resolved spectroscopy with an emphasis on experimental implementation. The authors carefully explain and relate for the reader how measurements are connected to the core physical principles. They use the time-dependent wave packet as a building block for understanding quantum dynamics, progressively advancing to more complex topics. The topics are discussed in paired sections, one discussing the theory and the next presenting the related experimental methods. A wide range of readers including students and newcomers to the field will gain a clear and practical understanding of how to measure aspects of molecular dynamics such as wave packet motion, intramolecular vibrational relaxation, and electron-electron coupling, and how to describe such measurements mathematically.
Mixed-Signal Circuits offers a thoroughly modern treatment of integrated circuit design in the context of mixed-signal applications. Featuring chapters authored by leading experts from industry and academia, this book: Discusses signal integrity and large-scale simulation, verification, and testing Demonstrates advanced design techniques that enable digital circuits and sensitive analog circuits to coexist without any compromise Describes the process technology needed to address the performance challenges associated with developing complex mixed-signal circuits Deals with modeling topics, such as reliability, variability, and crosstalk, that define pre-silicon design methodology and trends, and are the focus of companies involved in wireless applications Develops methods to move analog into the digital domain quickly, minimizing and eliminating common trade-offs between performance, power consumption, simulation time, verification, size, and cost Details approaches for very low-power performances, high-speed interfaces, phase-locked loops (PLLs), voltage-controlled oscillators (VCOs), analog-to-digital converters (ADCs), and biomedical filters Delineates the respective parts of a full system-on-chip (SoC), from the digital parts to the baseband blocks, radio frequency (RF) circuitries, electrostatic-discharge (ESD) structures, and built-in self-test (BIST) architectures Mixed-Signal Circuits explores exciting opportunities in wireless communications and beyond. The book is a must for anyone involved in mixed-signal circuit design for future technologies.
Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances that are driving the field forward. A stand-alone textbook for courses on attosecond optics and the interaction of matter with ultrafast, high-power lasers, the book begins with basic theory and gradually advances to more complex ideas. Using both semi-classical models and quantum mechanics theories, the author explains foundational concepts and mechanisms including femtosecond lasers, high-order harmonic generation, and the technological leap that inspired attosecond pulse generation. The book introduces techniques for generating attosecond train using the basis of high-order harmonics, followed by an explanation of gating methods for extracting single isolated pulses. Chapters examine the connection between attosecond pulses and high harmonic generation, the use of driving lasers as key tools in attosecond generation, the mechanism of chirped pulse amplification, and the generation of few-cycle pulses. The book looks at carrier-envelope phase stabilization and the theoretical foundations for single atom and dipole phase response. It discusses propagation effects, introducing several approaches for improving phase matching; attosecond pulse generation and characterization, covering attosecond pulse train and single isolated pulses; and several examples of experimental applications for attosecond pulses.
This book provides a first integrated view of nanophotonics and plasmonics, covering the use of dielectric, semiconductor, and metal nanostructures to manipulate light at the nanometer scale. The presentation highlights similarities and advantages, and shows the common underlying physics, targets, and methodologies used for different materials (optically transparent materials for nanophotonics, vs opaque materials for plasmonics). Ultimately, the goal is to provide a basis for developing a unified platform for both fields. In addition to the fundamentals and detailed theoretical background, the book showcases the main device applications. Ching Eng (Jason) Png is Director of the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore. Yuriy A. Akimov is a scientist in the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore.
This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance.
The unparalleled large-scale commercial application of poly(3,4-ethylenedioxythiophene), otherwise known as PEDOT, continues to fuel a need for literature about it that is concise, easily available, but sufficiently comprehensive. Designed to meet the requirements of readers from different areas of expertise and experience with the substance, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer provides a comprehensive overview of chemical, physical, and technical information about this preeminent and most forwardly developed electrically conductive polymer. An indispensable resource for researchers, developers, and users of PEDOT-written by the researchers who succeeded in commercializing it A necessary response to the massive interest-as well as patents and papers-spawned by PEDOT, this handbook provides basic knowledge and explores technical applications, based on information generated by universities and academic research, as well as by industrial scientists. Available in various formulations and conductivities, this versatile PEDOT can be adapted for the needs and specific industrial applications of its different users. Although valuable information exists in handbooks on polythiophene chemistry and physics, under which PEDOT falls, until now, few if any books have focused exclusively on this important conducting polymer-certainly not one that so completely elucidates both its experimental and practical aspects. This book: Begins with a brief history of conducting polymers and polythiophenes Describes the invention of PEDOT and its commercial outgrowth, PEDOT:PSS Emphasizes key technical and commercial aspects and usage of PEDOT and how they have stimulated scientific research in a wide range of fields Explains the chemical and physical background for PEDOT in terms of its primary use and incorporation in products including cellular phones and flat panel displays Valuable for readers at any level of familiarity with PEDOT, this one-stop compilation of information offers specialists several unpublished results from the authors' celebrated work, as well as often overlooked information from patents. Balancing sufficient detail and references for further study, this book is a powerful tool for anyone working in the field.
This textbook offers a comprehensive and up-to-date overview of the basic ideas in modern quantum optics, beginning with a review of the whole of optics, and culminating in the quantum description of light. The book emphasizes the phenomenon of interference as the key to understanding the behavior of light, and discusses distinctions between the classical and quantum nature of light. Laser operation is reviewed at great length and many applications are covered, such as laser cooling, Bose condensation and the basics of quantum information and teleportation. Quantum mechanics is introduced in detail using the Dirac notation, which is explained from first principles. In addition, a number of non-standard topics are covered such as the impossibility of a light-based Maxwell's demon, the derivation of the Second Law of thermodynamics from the first-order time-dependent quantum perturbation theory, and the concept of Berry's phase. The book emphasizes the physical basics much more than the formal mathematical side, and is ideal for a first, yet in-depth, introduction to the subject. Five sets of problems with solutions are included to further aid understanding of the subject.
This book covers all aspects of waves and optics ranging from one dimensional waves in a vibrating string, two dimensional waves in a vibrating membrane, both of which are transverse, three dimensional electromagnetic waves generated by radiating antennas and longitudinal sound/pressure waves in an air column. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Yet for too long, there has been no comprehensive textbook on radio astronomy for undergraduate students. This two-volume set of introductory textbooks is exclusively devoted to radio astronomy, with extensive discussions of telescopes, observation methods, and astrophysical processes that are relevant for this exciting field. The first volume, Fundamentals of Radio Astronomy: Observational Methods, discusses radio astronomy instrumentation and the techniques to conduct successful observations. The second volume, Fundamentals of Radio Astronomy: Astrophysics, discusses the physical processes that give rise to radio emission, presents examples of astronomical objects that emit by these mechanisms, and illustrates how the relevant physical parameters of astronomical sources can be obtained from the radio observations. Requiring no prior knowledge of astronomy, the two volumes are ideal textbooks for radio astronomy courses at the undergraduate or graduate level, particularly those that emphasize radio wavelength instrumentation and observational techniques or the astrophysics of radio sources. The set enables instructors to pick and choose topics from the two volumes that best fit their courses. Features: Explores radio astronomy instruments and techniques that are important to enable observations Describes astrophysical processes that produce the radio emissions observed in different types of astronomical objects Includes numerous worked examples to demonstrate how the methods are used to solve problems, in addition to advanced material for students with more extensive physics and mathematics backgrounds
This book presents theoretical treatments on various electronic and atomic processes in non-metallic materials from a unified point of view. It starts with the basic properties of semiconductors, treating the system as a macroscopic association of electrons and ions. In their ground state, fruitful results are derived, such as the band theory for electrons in a periodic lattice and a useful concept of "hole." The electron-lattice interaction is then introduced as a dynamical response of condensed matter when it is electronically excited. With the aid of proper configuration coordinate diagrams, various phenomena are precisely examined, including carrier scattering, polaron formation, lattice relaxation, Stokes shift and phonon side band in optical spectrum, intrinsic and extrinsic self-trapping, and structural changes. The book provides readers a deep understanding of the physics underlying these phenomena and excellent insight to develop their further research. Graduate students who have finished the basic study on solid-state physics and quantum mechanics and research scientists and engineers in materials science and engineering will benefit immensely from it.
Learn Fourier and diffractive optics through examples and computer simulation This book presents current theories of diffraction, imaging, and related topics based on Fourier analysis and synthesis techniques, which are essential for understanding, analyzing, and synthesizing modern imaging, optical communications and networking, and micro/nano systems. The author demonstrates how these theories become the foundation for a number of practical applications, including: Tomography Magnetic resonance imaging Synthetic aperture radar (SAR) and interferometric SAR Optical communications and networking devices, such as directional couplers in fiber and integrated optics, dense wavelength division multiplexing and demimultiplexing systems Computer-generated holograms and analog holograms Wireless systems using EM waves Micro/nano systems requiring rigorous diffraction analysis "Diffraction, Fourier Optics and Imaging" takes an innovative approach that focuses on the use of examples and computer simulations. This approach emerged from the author's course notes and has been refined during his many years of classroom experience. Readers are given clear and concise explanations of theory, and examples that demonstrate the practical applications of theory are provided. Finally, readers are given exercises, ranging from simple to complex, to apply their knowledge to solving real-world problems. Many of the exercises and examples are solved using MATLAB(R), enabling readers to perform highly complex computational tasks through software simulation. This book is ideal for upper-level undergraduate and graduate courses in electrical engineering and physics. Its many examples and topics withcomputer simulation show students how an understanding of Fourier analysis can be applied in a broad range of fields in science and technology. Engineers and scientists particularly related to optical engineering, micro/nano systems and fiber optic communications/networking will find this an excellent resource that sheds new light on how to resolve key problems in imaging.
Polarization methods for the study of the light scattering properties of various disperse media have hitherto only been reviewed in specialist journals relating to the fields of geophysics, astrophysics and optics. The only texts in this field are devoted to specific topics and do not cover the subject as a whole. In this book the author presents for the first time, the main results obtained in the field of polarization optics in a wide range of application areas. These will be used widely in different branches of modern science and technology over the next century. It is expected that this book will stimulate studies in the field and attract new people to this interesting field of research.
Since its publication more than 15 years ago, Heat Conduction Using Green s Functions has become the consummate heat conduction treatise from the perspective of Green s functions and the newly revised Second Edition is poised to take its place. Based on the authors own research and classroom experience with the material, this book organizes the solution of heat conduction and diffusion problems through the use of Green s functions, making these valuable principles more accessible. As in the first edition, this book applies extensive tables of Green s functions and related integrals, and all chapters have been updated and revised for the second edition, many extensively. Details how to access the accompanying Green s Function Library site, a useful web-searchable collection of GFs based on the appendices in this book The book reflects the authors conviction that although Green s functions were discovered in the nineteenth century, they remain directly relevant to 21st-century engineers and scientists. It chronicles the authors continued search for new GFs and novel ways to apply them to heat conduction. New features of this latest edition
A main goal of the first edition was to make GFs more accessible. To facilitate this objective, one of the authors has created a companion Internet site called the Green s Function Library, a web-searchable collection of GFs. Based on the appendices in this book, this library is organized by differential equation, geometry, and boundary condition. Each GF is also identified and cataloged according to a GF numbering system. The library also contains explanatory material, references, and links to related sites, all of which supplement the value of Heat Conduction Using Green s Functions, Second Edition as a powerful tool for understanding."
Machines increasingly pervade the mining industry, reducing manual labor and raising production. While the use of new technologies such as remote control, vision enhancement technologies, continuous haulage, and automated equipment has grown, so has the potential for new health and safety risks. Written by leading experts from Australia and North America, Human Factors for the Design, Operation, and Maintenance of Mining Equipment covers the impact of new mining technology on human work performance and safety. Ergonomics experts Tim John Horberry, Robin Burgess-Limerick, and Lisa J. Steiner draw on their personal experience to provide up-to-date research, case studies, and examples, making the book useful, accurate, informative, and easy to read. They set the scene with a general, yet fundamental review of human factors information related to equipment. They then examine the physical environment and the importance of key concerns such as vibration, noise, heat, and dust in maintaining and operating mining equipment. The authors expand their scope by examining wider organizational and task factors related to mining equipment, including the long-standing issues of operator fatigue and stress as well as newer concerns such as distraction and information overload. A synthesis of available human factors knowledge and research, the book describes human factors principles applied to mining equipment from a multidisciplinary perspective and combines it into one volume. The authors combine their in-the-trenches experience and academic expertise to present a treatment that balances breadth with depth. The book supplies a much-needed overview of the human element in the journey to optimal equipment design of mining equipment.
"a detailed, cognizant account of numerous crucial aspects of optical microring resonators" - Amr S. Helmy, Professor of Electrical & Computer Engineering, University of Toronto "an excellent choice for gaining an insight into the vast potential of microring resonators" - Jalil Ali, Professor, Laser Center ISI-SIR, University of Technology, Malaysia "a thorough treatment... appeal[s] to a wide range of audiences" - L. Jay Guo, Professor of Electrical Engineering & Computer Science, The University of Michigan The field of microring resonator research has seen tremendous growth over the past decade, with microring resonators now becoming a ubiquitous element in integrated photonics technology. This book fills the need for a cohesive and comprehensive treatment of the subject, given its importance and the proliferation of new research in the field. The expert author has as an introductory guide for beginners as well as a reference source for more experienced researchers. This book aims to fulfill this need by providing a concise and detailed treatment of the fundamental concepts and theories that underpin the various applications. To appeal to as wide a readership as possible, major areas of applications of microring resonators will also be covered in depth.
"This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." -Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." -Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." -Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave's properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities.
This text provides an introduction to the important physics underpinning current technologies, highlighting key concepts in areas that include linear and rotational motion, energy, work, power, heat, temperature, fluids, waves, and magnetism. This revision reflects the latest technology advances, from smart phones to the Internet of Things, and all kinds of sensors. The author also provides more modern worked examples with useful appendices and laboratories for hands-on practice. There are also two brand new chapters covering sensors as well as electric fields and electromagnetic radiation as applied to current technologies.
Masers and Lasers: An Historical Approach examines the progress of research and practical use of lasers chronologically, covering the fundamental science in detail alongside fascinating biographical sketches of famous physicists and summaries of seminal papers. It supplies helpful drawings of prototype devices, conceptual diagrams to aid in understanding, and remarkable historical photographs. This Second Edition contains new chapters on ultrashort pulse lasers and nonlinear optics, incorporates the latest developments and insights from key scientists, and includes extensive updates on fiber lasers, amplifiers, ultraviolet and X-ray lasers, and plasmonic lasers. |
![]() ![]() You may like...
Decolonisation - Revolution & Evolution
David Boucher, Ayesha Omar
Paperback
This Will Not Pass - Trump, Biden, And…
Jonathan Martin, Alexander Burns
Hardcover
|