0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (12)
  • R250 - R500 (118)
  • R500+ (4,314)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Optics (light)

Light Propagation in Linear Optical Media (Paperback): Glen D.  Gillen, Katharina Gillen, Shekhar Guha Light Propagation in Linear Optical Media (Paperback)
Glen D. Gillen, Katharina Gillen, Shekhar Guha
R2,599 Discovery Miles 25 990 Ships in 12 - 19 working days

Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation of Gaussian beams and discuss various diffraction models for the propagation of light. They also explore methods for spatially confining (trapping) cold atoms within localized light-intensity patterns. This book can be used as a technical reference by professional scientists and engineers interested in light propagation and as a supplemental text for upper-level undergraduate or graduate courses in optics.

Nonlinear Optical Systems - Principles, Phenomena, and Advanced Signal Processing (Paperback): Le Nguyen Binh, Dangvan Liet Nonlinear Optical Systems - Principles, Phenomena, and Advanced Signal Processing (Paperback)
Le Nguyen Binh, Dangvan Liet
R2,639 Discovery Miles 26 390 Ships in 12 - 19 working days

Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing is a simplified overview of the evolution of technology associated with nonlinear systems and advanced signal processing. This book's coverage ranges from fundamentals to phenomena to the most cutting-edge aspects of systems for next-generation biomedical monitoring and nonlinear optical transmission. The authors address how these systems are applied through photonic signal processing in contemporary optical systems for communications and/or laser systems. They include a concise but sufficient explanation of mathematical representation of nonlinear equations to provide insight into nonlinear dynamics at different phases. The book also describes advanced aspects of solitons and bound solitons for passive- and active-mode locked fiber lasers, in which higher-order differential equations can be employed to represent the dynamics of amplitude evolution in the current or voltages of lightwaves in such systems. Covering a wide range of topics, this book: Introduces nonlinear systems and some mathematical representations, particularly the routes to chaos and bifurcation Describes nonlinear fiber lightwave lasing systems Covers nonlinear phenomena in fiber lasers, including both passive and active energy storage cavities Experimentally and theoretically demonstrates soliton pulses, in which lightwaves are the carrier under their envelopes Assembles and demonstrates sequences of both single and multiple solitons in a group and then assesses their dynamics in detail Examines the evolution of bound solitons, which are transmitted through single-mode optical fibers that compose a phase variation system This text outlines the theory and techniques used in nonlinear physics and applications for physical systems. It also illustrates the use of MATLAB (R) and Simulink (R) computer models and processing techniques for nonlinear signals. Building on readers' newly acquired fundamental understanding of nonlinear systems and associated signal processing, the book then demonstrates the use of such applications in real-world, practical environments.

Essential Principles of Image Sensors (Paperback): Takao Kuroda Essential Principles of Image Sensors (Paperback)
Takao Kuroda
R2,570 Discovery Miles 25 700 Ships in 12 - 19 working days

Providing a succinct introduction to the systemization, noise sources, and signal processes of image sensor technology, Essential Principles of Image Sensors discusses image information and its four factors: space, light intensity, wavelength, and time. Featuring clarifying and insightful illustrations, this must-have text: Explains how image sensors convert optical image information into image signals Treats space, wavelength, and time as digitized built-in coordinate points in image sensors and systems Details the operational principles, pixel technology, and evolution of CCD, MOS, and CMOS sensors with updated technology Describes sampling theory, presenting unique figures demonstrating the importance of phase Explores causes for the decline of image information quality In a straightforward manner suitable for beginners and experts alike, Essential Principles of Image Sensors covers key topics related to digital imaging including semiconductor physics, component elements necessary for image sensors, silicon as a sensitive material, noises in sensors, and more.

Integrated Microsystems - Electronics, Photonics, and Biotechnolgy (Paperback): Krzysztof Iniewski Integrated Microsystems - Electronics, Photonics, and Biotechnolgy (Paperback)
Krzysztof Iniewski
R3,192 Discovery Miles 31 920 Ships in 12 - 19 working days

As rapid technological developments occur in electronics, photonics, mechanics, chemistry, and biology, the demand for portable, lightweight integrated microsystems is relentless. These devices are getting exponentially smaller, increasingly used in everything from video games, hearing aids, and pacemakers to more intricate biomedical engineering and military applications. Edited by Kris Iniewski, a revolutionary in the field of advanced semiconductor materials, Integrated Microsystems: Electronics, Photonics, and Biotechnology focuses on techniques for optimized design and fabrication of these intelligent miniaturized devices and systems. Composed of contributions from experts in academia and industry around the world, this reference covers processes compatible with CMOS integrated circuits, which combine computation, communications, sensing, and actuation capabilities. Light on math and physics, with a greater emphasis on microsystem design and configuration and electrical engineering, this book is organized in three sections-Microelectronics and Biosystems, Photonics and Imaging, and Biotechnology and MEMs. It addresses key topics, including physical and chemical sensing, imaging, smart actuation, and data fusion and management. Using tables, figures, and equations to help illustrate concepts, contributors examine and explain the potential of emerging applications for areas including biology, nanotechnology, micro-electromechanical systems (MEMS), microfluidics, and photonics.

Quantum Optics for Engineers (Paperback): F.J. Duarte Quantum Optics for Engineers (Paperback)
F.J. Duarte
R2,035 Discovery Miles 20 350 Ships in 12 - 19 working days

Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book: Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflection Provides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglement Explains applications of the probability amplitude of quantum entanglement to optical communications, quantum cryptography, quantum teleportation, and quantum computing. Quantum Optics for Engineers is succinct, transparent, and practical, revealing the intriguing world of quantum entanglement via many practical examples. Ample illustrations are used throughout its presentation and the theory is presented in a methodical, detailed approach.

Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies (Paperback): Krzysztof Iniewski Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies (Paperback)
Krzysztof Iniewski
R2,594 Discovery Miles 25 940 Ships in 12 - 19 working days

Light on physics and math, with a heavy focus on practical applications, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies discusses the developments necessary to realize the growth of truly integrated sensors for use in physical, biological, optical, and chemical sensing, as well as future micro- and nanotechnologies. Used to pick up sound, movement, and optical or magnetic signals, portable and lightweight sensors are perpetually in demand in consumer electronics, biomedical engineering, military applications, and a wide range of other sectors. However, despite extensive existing developments in computing and communications for integrated microsystems, we are only just now seeing real transformational changes in sensors, which are critical to conducting so many advanced, integrated tasks. This book is designed in two sections-Optical and Acoustic Sensors and Magnetic and Mechanical Sensors-that address the latest developments in sensors. The first part covers: Optical and acoustic sensors, particularly those based on polymer optical fibers Potential of integrated optical biosensors and silicon photonics Luminescent thermometry and solar cell analyses Description of research from United States Army Research Laboratory on sensing applications using photoacoustic spectroscopy Advances in the design of underwater acoustic modems The second discusses: Magnetic and mechanical sensors, starting with coverage of magnetic field scanning Some contributors' personal accomplishments in combining MEMS and CMOS technologies for artificial microsystems used to sense airflow, temperature, and humidity MEMS-based micro hot-plate devices Vibration energy harvesting with piezoelectric MEMS Self-powered wireless sensing As sensors inevitably become omnipresent elements in most aspects of everyday life, this book assesses their massive potential in the development of interfacing applications for various areas of product design and sciences-including electronics, photonics, mechanics, chemistry, and biology, to name just a few.

Thin-Film Organic Photonics - Molecular Layer Deposition and Applications (Paperback): Tetsuzo Yoshimura Thin-Film Organic Photonics - Molecular Layer Deposition and Applications (Paperback)
Tetsuzo Yoshimura
R2,627 Discovery Miles 26 270 Ships in 12 - 19 working days

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dot-or molecule-by-molecule-growth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities. Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to: Photonics/electronics, particularly in optical interconnects used in computers Optical switching and solar energy conversion systems Bio/ medical photonics, such as photodynamic therapy Organic photonic materials, devices, and integration processes With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.

Guided Wave Optics and Photonic Devices (Paperback): Shyamal Bhadra, Ajoy Ghatak Guided Wave Optics and Photonic Devices (Paperback)
Shyamal Bhadra, Ajoy Ghatak
R2,577 Discovery Miles 25 770 Ships in 12 - 19 working days

Guided Wave Optics and Photonic Devices introduces readers to a broad cross-section of topics in this area, from the basics of guided wave optics and nonlinear optics to biophotonics. The book is inspired by and expands on lectures delivered by distinguished speakers at a three-week school on guided wave optics and devices organized at the CSIR-Central Glass and Ceramic Research Institute in Kolkata in 2011. An Introduction to Guided Wave Optics and Photonic Devices: Principles, Applications, and Future Directions The book discusses the concept of modes in a guided medium from first principles, emphasizing the importance of dispersion properties in optical fibers. It describes fabrication and characterization techniques of rare-earth-doped optical fibers for amplifiers and lasers, with an eye to future applications. Avoiding complex mathematical formalism, it also presents the basic theory and operational principles of fiber amplifiers and lasers. The book examines techniques for writing fiber Bragg gratings, which are of particular interest for smart sensing applications. A chapter focuses on the fundamental principles of Fourier optics and its implementation in guided wave optics. In addition, the book explains the critical phenomena of soliton dynamics and supercontinuum generation in photonic crystal fiber, including its fabrication process and characteristics. It also looks at plasmonics in guided media and nonlinearity in stratified media-both key areas for future research. The last chapter explores the importance of lasers in biophotonic applications. Written by experts engaged in teaching, research, and development in optics and photonics, this reference brings together fundamentals and recent advances in one volume. It offers a valuable overview of the field for students and researchers alike and identifies directions for future research in guided wave and photonic device technology.

Microoptics and Nanooptics Fabrication (Paperback): Shanalyn Kemme Microoptics and Nanooptics Fabrication (Paperback)
Shanalyn Kemme
R2,428 Discovery Miles 24 280 Ships in 12 - 19 working days

The deep interconnection between micro/nanooptical components and related fabrication technologies-and the constant changes in this ever-evolving field-means that successful design depends on the engineer's ability to accommodate cutting-edge theoretical developments in fabrication techniques and experimental realization. Documenting the state of the art in fabrication processes, Microoptics and Nanooptics Fabrication provides an up-to-date synopsis of recent breakthroughs in micro- and nanooptics that improve key developmental processes. This text elucidates the precise and miniaturized scale of today's fabrication methods and their importance in creating new optical components to access the spectrum of physical optics. It details successful fabrication techniques and their direct effect on the intended performance of micro- and nanooptical components. The contributors explore the constraints related to material selection, component lateral extent, minimum feature size, and other issues that cause fabrication techniques to lag behind corresponding theory in the development process. Written with the professional optical engineer in mind, this book omits the already well-published broader processing fundamentals. Instead it focuses on key tricks of the trade helpful in reformulating processes to achieve necessary optical targets, improve process fidelity, and reduce production costs. The contributing authors represent the vanguard in micro-optical fabrication. The result of their combined efforts, this searing analysis of emerging fabrication technologies will continue to fuel the expansion of optics components, from the microwave to the infrared through the visible regime.

Advances in Atomic, Molecular, and Optical Physics, Volume 66 (Hardcover): Susanne F Yelin, Ennio Arimondo, Chun C. Lin Advances in Atomic, Molecular, and Optical Physics, Volume 66 (Hardcover)
Susanne F Yelin, Ennio Arimondo, Chun C. Lin
R5,800 Discovery Miles 58 000 Ships in 12 - 19 working days

Advances in Atomic, Molecular, and Optical Physics, Volume 66 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth. New to this volume are chapters devoted to 2D Coherent Spectroscopy of Electronic Transitions, Nonlinear and Quantum Optical Properties and Applications of Intense Twin-Beams, Non-classical Light Generation from III-V and Group-IV Solid-State Cavity Quantum Systems, Trapping Atoms with Radio Frequency Adiabatic Potentials, Quantum Control of Optomechanical Systems, and Efficient Description of Bose-Einstein Condensates in Time-Dependent Rotating Traps. With timely articles written by distinguished experts that contain relevant review materials and detailed descriptions of important developments in the field, this series is a must have for those interested in the variety of topics covered.

Contemporary Holography (Hardcover): C. S. Narayanamurthy Contemporary Holography (Hardcover)
C. S. Narayanamurthy
R2,574 Discovery Miles 25 740 Ships in 12 - 19 working days

Discusses mainly fundamentals and applications of dynamic holography using photorefractive crystals and many different types of digital holography Covers developments in holography starting from photopolymer recording techniques to CMOS based digital holography Examines important applications of each topic like digital holographic microscopy, Real-Time/Time Average/Double exposure digital holographic interferometry, digital holographic photoelasticity for stress or strain measurements Discusses principles of Stokes/Correlation holography Includes homework problems and a solutions manual for adopting professors

Laser Beam Propagation in Nonlinear Optical Media (Paperback): Shekhar Guha Laser Beam Propagation in Nonlinear Optical Media (Paperback)
Shekhar Guha
R2,577 Discovery Miles 25 770 Ships in 12 - 19 working days

"This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then this book will be a welcome addition to their bookshelf." -Richard Sutherland, Mount Vernon Nazarene University, Ohio, USA Laser Beam Propagation in Nonlinear Optical Media provides a collection of expressions, equations, formulas, and derivations used in calculating laser beam propagation through linear and nonlinear media which are useful for predicting experimental results. The authors address light propagation in anisotropic media, oscillation directions of the electric field and displacement vectors, the walk-off angles between the Poynting and propagation vectors, and effective values of the d coefficient for biaxial, uniaxial, and isotropic crystals. They delve into solutions of the coupled three wave mixing equations for various nonlinear optical processes, including quasi-phase matching and optical parametric oscillation, and discuss focusing effects and numerical techniques used for beam propagation analysis in nonlinear media, and phase retrieval technique. The book also includes examples of MATLAB and FORTRAN computer programs for numerical evaluations. An ideal resource for students taking graduate level courses in nonlinear optics, Laser Beam Propagation in Nonlinear Optical Media can also be used as a reference for practicing professionals.

Fourier Modal Method and Its Applications in Computational Nanophotonics (Paperback): Hwi Kim, Junghyun Park, Byoungho Lee Fourier Modal Method and Its Applications in Computational Nanophotonics (Paperback)
Hwi Kim, Junghyun Park, Byoungho Lee
R3,279 Discovery Miles 32 790 Ships in 12 - 19 working days

Most available books on computational electrodynamics are focused on FDTD, FEM, or other specific technique developed in microwave engineering. In contrast, Fourier Modal Method and Its Applications in Computational Nanophotonics is a complete guide to the principles and detailed mathematics of the up-to-date Fourier modal method of optical analysis. It takes readers through the implementation of MATLAB (R) codes for practical modeling of well-known and promising nanophotonic structures. The authors also address the limitations of the Fourier modal method. Features Provides a comprehensive guide to the principles, methods, and mathematics of the Fourier modal method Explores the emerging field of computational nanophotonics Presents clear, step-by-step, practical explanations on how to use the Fourier modal method for photonics and nanophotonics applications Includes the necessary MATLAB codes, enabling readers to construct their own code Using this book, graduate students and researchers can learn about nanophotonics simulations through a comprehensive treatment of the mathematics underlying the Fourier modal method and examples of practical problems solved with MATLAB codes.

Solar Radiation - Practical Modeling for Renewable Energy Applications (Paperback): Daryl Ronald Myers Solar Radiation - Practical Modeling for Renewable Energy Applications (Paperback)
Daryl Ronald Myers
R2,663 Discovery Miles 26 630 Ships in 12 - 19 working days

Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation measurements. It also examines the accuracy of solar radiation modeling and measurements. The majority of the book describes the most popular simple models for estimating broadband and spectral solar resources available to flat plate, concentrating, photovoltaic, solar thermal, and daylighting engineering designs. Sufficient detail is provided for readers to implement the models in assorted development environments. Covering the nuts and bolts of practical solar radiation modeling applications, this book helps readers translate solar radiation data into viable, real-world renewable energy applications. It answers many how-to questions relating to solar energy conversion systems, solar daylighting, energy efficiency of buildings, and other solar radiation applications.

Fundamentals and Applications of Ultrasonic Waves (Paperback, 2nd edition): J. David N. Cheeke Fundamentals and Applications of Ultrasonic Waves (Paperback, 2nd edition)
J. David N. Cheeke
R2,530 Discovery Miles 25 300 Ships in 12 - 19 working days

Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.

Quantum Dots - Optics, Electron Transport and Future Applications (Hardcover, New): Alexander Tartakovskii Quantum Dots - Optics, Electron Transport and Future Applications (Hardcover, New)
Alexander Tartakovskii
R4,166 Discovery Miles 41 660 Ships in 12 - 19 working days

A comprehensive review of cutting-edge solid state research, focusing on its prominent example - quantum dot nanostructures - this book features a broad range of techniques for fabrication of these nano-structured semiconductors and control of their quantum properties. Written by leading researchers, the book considers advanced III-V and II-VI semiconductor quantum dots (QDs) realized by self-assembly, lithography and chemical synthesis; novel QD structures in nanowires and graphene; and transport and optical methods for control of single QDs. Significant attention is given to manipulation of single spins and control of their magnetic environment, and generation of quantum light emitted by single dots in dielectric cavities and coupled to plasmons in metallic structures. It is a valuable resource for graduate students and researchers new to this field.

Laser Beam Shaping - Theory and Techniques, Second Edition (Paperback, 2nd edition): Fred M. Dickey Laser Beam Shaping - Theory and Techniques, Second Edition (Paperback, 2nd edition)
Fred M. Dickey
R3,107 Discovery Miles 31 070 Ships in 12 - 19 working days

Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.

Transionospheric Synthetic Aperture Imaging (Hardcover, 1st ed. 2017): Mikhail Gilman, Erick Smith, Semyon Tsynkov Transionospheric Synthetic Aperture Imaging (Hardcover, 1st ed. 2017)
Mikhail Gilman, Erick Smith, Semyon Tsynkov
R4,511 Discovery Miles 45 110 Ships in 12 - 19 working days

This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous - no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field, as well as an accurate account of a range of relevant physical processes and phenomena. The book is intended for applied mathematicians interested in the area of radar imaging or, more generally, remote sensing, as well as physicists and electrical/electronic engineers who develop/operate spaceborne SAR sensors and perform the data processing. The methods in the book are also useful for researchers and practitioners working on other types of imaging. Moreover, the book is accessible to graduate students in applied mathematics, physics, engineering, and related disciplines. Praise for Transionospheric Synthetic Aperture Imaging: "I perceive that this text will mark a turning point in the field of synthetic aperture radar research and practice. I believe this text will instigate a new era of more rigorous image formation relieving the research, development and practitioner communities of inconsistent physical assumptions and numerical approaches." - Richard Albanese, Senior Scientist, Albanese Defense and Energy Development LLC

High-Speed Photonics Interconnects (Paperback): Lukas Chrostowski, Krzysztof Iniewski High-Speed Photonics Interconnects (Paperback)
Lukas Chrostowski, Krzysztof Iniewski
R2,664 Discovery Miles 26 640 Ships in 12 - 19 working days

Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed Photonics Interconnects explores some of the groundbreaking technologies and applications that are based on photonics interconnects. From the Evolution of High-Speed I/O Circuits to the Latest in Photonics Interconnects Packaging and Lasers Featuring contributions by experts from academia and industry, the book brings together in one volume cutting-edge research on various aspects of high-speed photonics interconnects. Contributors delve into a wide range of technologies, from the evolution of high-speed input/output (I/O) circuits to recent trends in photonics interconnects packaging. The book discusses the challenges associated with scaling I/O data rates and current design techniques. It also describes the major high-speed components, channel properties, and performance metrics. The book exposes readers to a myriad of applications enabled by photonics interconnects technology. Learn about Optical Interconnect Technologies Suitable for High-Density Integration with CMOS Chips This richly illustrated work details how optical interchip communication links have the potential to fully leverage increased data rates provided through complementary metal-oxide semiconductor (CMOS) technology scaling at suitable power-efficiency levels. Keeping the mathematics to a minimum, it gives engineers, researchers, graduate students, and entrepreneurs a comprehensive overview of the dynamic landscape of high-speed photonics interconnects.

Wireless And Guided Wave Electromagnetics - Fundamentals and Applications (Paperback): Le Nguyen Binh Wireless And Guided Wave Electromagnetics - Fundamentals and Applications (Paperback)
Le Nguyen Binh
R2,030 Discovery Miles 20 300 Ships in 12 - 19 working days

Wireless communications allow high-speed mobile access to a global Internet based on ultra-wideband backbone intercontinental and terrestrial networks. Both of these environments support the carrying of information via electromagnetic waves that are wireless (in free air) or guided through optical fibers. Wireless and Guided Wave Electromagnetics: Fundamentals and Applications explores the fundamental aspects of electromagnetic waves in wireless media and wired guided media. This is an essential subject for engineers and physicists working with communication technologies, mobile networks, and optical communications. This comprehensive book: Builds from the basics to modern topics in electromagnetics for wireless and optical fiber communication Examines wireless radiation and the guiding of optical waves, which are crucial for carrying high-speed information in long-reach optical networking scenarios Explains the physical phenomena and practical aspects of guiding optical waves that may not require detailed electromagnetic solutions Explores applications of electromagnetic waves in optical communication systems and networks based on frequency domain transfer functions in the linear regions, which simplifies the physical complexity of the waves but still allows them to be examined from a system engineering perspective Uses MATLAB (R) and Simulink (R) models to simulate and illustrate the electromagnetic fields Includes worked examples, laboratory exercises, and problem sets to test understanding The book's modular structure makes it suitable for a variety of courses, for self-study, or as a resource for research and development. Throughout, the author emphasizes issues commonly faced by engineers. Going a step beyond traditional electromagnetics textbooks, this book highlights specific uses of electromagnetic waves with a focus on the wireless and optical technologies that are increasingly important for high-speed transmission over very long distances.

Optical Microring Resonators - Theory, Techniques, and Applications (Hardcover): Vien Van Optical Microring Resonators - Theory, Techniques, and Applications (Hardcover)
Vien Van
R5,528 Discovery Miles 55 280 Ships in 12 - 19 working days

"a detailed, cognizant account of numerous crucial aspects of optical microring resonators" - Amr S. Helmy, Professor of Electrical & Computer Engineering, University of Toronto "an excellent choice for gaining an insight into the vast potential of microring resonators" - Jalil Ali, Professor, Laser Center ISI-SIR, University of Technology, Malaysia "a thorough treatment... appeal[s] to a wide range of audiences" - L. Jay Guo, Professor of Electrical Engineering & Computer Science, The University of Michigan The field of microring resonator research has seen tremendous growth over the past decade, with microring resonators now becoming a ubiquitous element in integrated photonics technology. This book fills the need for a cohesive and comprehensive treatment of the subject, given its importance and the proliferation of new research in the field. The expert author has as an introductory guide for beginners as well as a reference source for more experienced researchers. This book aims to fulfill this need by providing a concise and detailed treatment of the fundamental concepts and theories that underpin the various applications. To appeal to as wide a readership as possible, major areas of applications of microring resonators will also be covered in depth.

Displays - Fundamentals & Applications, Second Edition (Hardcover, 2nd edition): Rolf R. Hainich, Oliver Bimber Displays - Fundamentals & Applications, Second Edition (Hardcover, 2nd edition)
Rolf R. Hainich, Oliver Bimber
R3,932 Discovery Miles 39 320 Ships in 12 - 19 working days

In the extensive fields of optics, holography and virtual reality, technology continues to evolve. Displays: Fundamentals and Applications, Second Edition addresses these updates and discusses how real-time computer graphics and vision enable the application and displays of graphical 2D and 3D content. This book explores in detail these technological developments, as well as the shifting techniques behind projection displays, projector-camera systems, stereoscopic and autostereoscopic displays. This new edition contains many updates and additions reflecting the changes in fast developing areas such as holography and near-eye displays for Augmented and Virtual reality applications. Perfect for the student looking to sharpen their developing skill or the master refining their technique, Rolf Hainich and Oliver Bimber help the reader understand the basics of optics, light modulation, visual perception, display technologies, and computer-generated holography. With almost 500 illustrations Displays will help the reader see the field of augmentation and virtual reality display with new eyes. Features: * Covers physics, technology and techniques behind flat-panel as well as projection displays, projector-camera systems, stereoscopic and autostereoscopic displays, computer-generated holography, and near-eye displays * Discusses how real-time computer graphics and computer vision enable the visualization of graphical 2D and 3D content * Augmented by close to 500 rich illustrations, which give readers a clear understanding of existing and emerging display technology

Semiconductor Nanocrystals and Metal Nanoparticles - Physical Properties and Device Applications (Hardcover): Tupei Chen, Yang... Semiconductor Nanocrystals and Metal Nanoparticles - Physical Properties and Device Applications (Hardcover)
Tupei Chen, Yang Liu
R5,873 Discovery Miles 58 730 Ships in 12 - 19 working days

Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.

Singular Optics (Hardcover): Gregory J. Gbur Singular Optics (Hardcover)
Gregory J. Gbur
R5,560 Discovery Miles 55 600 Ships in 12 - 19 working days

"This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." -Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." -Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." -Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave's properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities.

Laser-Induced Damage in Optical Materials (Paperback): Detlev Ristau Laser-Induced Damage in Optical Materials (Paperback)
Detlev Ristau
R2,626 Discovery Miles 26 260 Ships in 12 - 19 working days

Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of high-power laser coatings, factoring in the effects of contamination and providing insight into typical application areas. Become Familiar with the Key Areas of Modern Photonics The text first provides a basic understanding of theoretical and experimental methods and then summarizes the current progress, strategies, and improvements occurring within the field of laser-induced damage. Divided into four sections, this book outlines apparent trends in modeling, and discusses measurement and evaluation techniques for laser damage thresholds in the context of international standardization and scaling laws for damage thresholds. This seminal work: Covers the major aspects of laser damage Considers all important aspects in industry and research Reviews laser damage effects in material and surfaces Contains chapters contributed by leading scientists in the field Laser-Induced Damage in Optical Materials details a variety of fundamental investigations in laser-induced damage mechanisms and functions as a valuable reference for researchers and producers of laser components, laser and photonics engineers and scientists, as well as users of laser technology and thin film optics.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Oxford Handbook of Clinical…
David H. Barlow Hardcover R5,817 Discovery Miles 58 170
Black & Wight Fireworks, British…
Derek Mack Paperback R704 Discovery Miles 7 040
Othello
P Edmondson, Stuart Hampton-Reeves Hardcover R2,335 Discovery Miles 23 350
Genetic Approaches to Mental Disorders
Elliot S. Gershon, C.Robert Cloninger Hardcover R839 Discovery Miles 8 390
Archaeology as a Tool of Civic…
Barbara J. Little, Paul A. Shackel Paperback R1,269 Discovery Miles 12 690
300 Egg Automatic Roller and Incubator…
R5,499 Discovery Miles 54 990
Liangzhu in the Eyes of an…
Lima Hardcover R2,873 Discovery Miles 28 730
Complete Fish Food Goldfish Flakes…
R145 R121 Discovery Miles 1 210
Developmental Neuropsychology - A…
Vicki Anderson, Elisabeth Northam, … Paperback R1,423 Discovery Miles 14 230
Use-Wear and Residue Analysis in…
Joao Manuel Marreiros, Juan F. Gibaja Bao, … Hardcover R2,511 Discovery Miles 25 110

 

Partners