![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
Plasma Physics and Engineering presents basic and applied knowledge on modern plasma physics, plasma chemistry, and plasma engineering for senior undergraduate and graduate students as well as for scientists and engineers working in academia; research labs; and industry with plasmas, laser and, combustion systems. This is a unique book providing a clear fundamental introduction to all aspects of modern plasma science, describing all electric discharges applied today from vacuum to atmospheric pressure and higher, from thermal plasma sources to essentially cold non-equilibrium discharges. A solutions manual is available for adopting professors, which is helpful in relevant university courses. Provides a lucid introduction to virtually all aspects of modern plasma science and technology Contains an extensive database on plasma kinetics and thermodynamics Includes many helpful numerical formulas for practical calculations, as well as numerous problems and concepts This revised edition includes new material on atmospheric pressure discharges, micro discharges, and different types of discharges in liquids Prof. Alexander Fridman is Nyheim Chair Professor of Drexel University and Director of C. & J. Nyheim Plasma Institute. His research focuses on plasma approaches to biology and medicine, to material treatment, fuel conversion, and environmental control. Prof. Fridman has almost 50 years of plasma research in national laboratories and universities of Russia, France, and the United States. He has published 8 books, and received numerous honors for his work, including Stanley Kaplan Distinguished Professorship in Chemical Kinetics and Energy Systems, George Soros Distinguished Professorship in Physics, the State Prize of the USSR, Plasma Medicine Award, Kurchatov Prize, Reactive Plasma Award, and Plasma Chemistry Award. Prof. Lawrence A. Kennedy is Dean of Engineering Emeritus and Professor of Mechanical Engineering Emeritus at the University of Illinois at Chicago and Professor of Mechanical Engineering Emeritus at the Ohio State University. His research focuses on chemically reacting flows and plasma processes. He is the author of more than 300 archival publications and 2 books, the editor of three monographs and served as Editor-in-Chief of the International Journal of Experimental Methods in Thermal and Fluid Science. Professor Kennedy was the Ralph W. Kurtz Distinguished Professor of Mechanical Engineering at OSU and the Stanley Kaplan University Scholar in Plasma Physics at UIC. Prof. Kennedy is also the recipient of numerous awards such as the American Society of Mechanical Engineers Heat Transfer Memorial Award (2008), and the Ralph Coats Roe Award from ASEE (1993). He is a Fellow of the American Society of Mechanical Engineers, the American Physical Society, the American Institute of Aeronautics and Astronautics and the American Association for the Advancement of Science.
As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Courses covering this subject are, therefore, very important in the education of the next generation of scientists who will continue to explore the Cosmos. This textbook, the second of two volumes, presents an extensive introduction to the astrophysical processes that are studied in radio astronomy. Suitable for undergraduate courses on radio astronomy, it discusses the physical phenomena that give rise to radio emissions, presenting examples of astronomical objects, and illustrating how the relevant physical parameters of astronomical sources can be obtained from radio observations. Unlike other radio astronomy textbooks, this book provides students with an understanding of the background and the underlying principles, with derivations available for most of the equations used in the textbook. Features: Presents a clear and concise discussion of the important astronomical concepts and physical processes that give rise to both radio continuum and radio spectral line emission Discusses radio emissions from a variety of astronomical sources and shows how the observed emissions can be used to derive the physical properties of these sources Includes numerous examples using actual data from the literature
This book encompasses the full breadth of the super-resolution imaging field, representing modern techniques that exceed the traditional diffraction limit, thereby opening up new applications in biomedicine. It shows readers how to use the new tools to increase resolution in sub-nanometer-scale images of living cells and tissue, which leads to new information about molecules, pathways and dynamics. The book highlights the advantages and disadvantages of the techniques, and gives state-of-the-art examples of applications using microscopes currently available on the market. It covers key techniques such as stimulated emission depletion (STED), structured illumination microscopy (SSIM), photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). It will be a useful reference for biomedical researchers who want to work with super-resolution imaging, learn the proper technique for their application, and simultaneously obtain a solid footing in other techniques.
Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security. Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on: Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube accelerators, neutron generators with detection of associated alpha particles, plasma devices, high flux sources, and laser-generated neutron sources Nuclear reactions with 14 MeV neutrons, including measurements of energy spectra, angular distributions, and deductions of reaction mechanism Nuclear reactions with three particles in the final state induced by neutrons and the identification of effects of final state interaction, quasi-free scattering, and charge-dependence of nuclear forces Charged particle and neutron detection methods, particularly position-sensitive detectors Industrial applications of nuclear analytical methods, especially in the metallurgy and coal industries Quality assurance and quality control measures for nuclear analytical methods Nuclear and atomic physics-based technology for combating illicit trafficking and terrorism Medical applications, including radiography, radiotherapy, in vivo neutron activation analysis, boron neutron therapy, collimated neutron beams, and dosimetry This book reflects the exciting developments in both fundamental nuclear physics and the application of fast neutrons to many practical problems. The book shows how 14 MeV neutrons are used in materials detection and analysis to effectively inspect large volumes in complex environments.
This title includes a number of Open Access chapters. Spectroscopy is a powerful technique that utilizes the interaction of light with matter. Analysis of various spectra can yield important physical characteristics of matter, including chemical composition, temperature, luminosity, mass, and more. The uses and implications of spectroscopy are very broad, with practical uses in many fields of science, including astronomy, medicine, analytic chemistry, material science, geology, and more. Researchers are constantly discovering new applications of spectroscopy, and it is expected to play an ever-increasing role in nanotechnology and superconductivity. This book brings together a diverse collection of new research advances in spectroscopy.
Since the first edition of this book was published several new developments have been made in the field of the moire theory. The most important of these concern new results that have recently been obtained on moire effects between correlated aperiodic (or random) structures, a subject that was completely absent in the first edition, and which appears now for the first time in a second, separate volume. This also explains the change in the title of the present volume, which now includes the subtitle "Volume I: Periodic Layers". This subtitle has been added to clearly distinguish the present volume from its new companion, which is subtitled "Volume II: Aperiodic Layers". It should be noted, however, that the new subtitle of the present volume may be somewhat misleading, since this book also treats (in Chapters 10 and 11) moire effects between repetitive layers, which are, in fact, geometric transformations of periodic layers, that are generally no longer periodic in themselves. The most suitable subtitle for the present volume would therefore have been "Periodic or Repetitive Layers", but in the end we have decided on the shorter version.
Preface - 1. The Compound Microscope - 2. Methods of illuminating and Using the Microscope - 3. The Stereomicroscope - 4. Measuring and Counting with the Microscope - 5. Preparing Mounts for the Microscope - 6. Collecting and Preparing Pure Cultures of Various Organisms - 7. The Polarizing Microscope - 8. The Phase-Contrast Microscope - 9. The Interference Microscope - 10. The Metallurgical Microscope - 11. Photomicrography - 12. Physical and Chemical Microscopy - Appendix - Index
Spectroscopic ellipsometry has been applied to a wide variety of material and device characterizations in solar cell research fields. In particular, device performance analyses using exact optical constants of component layers and direct analyses of complex solar cell structures are unique features of advanced ellipsometry methods. This second volume of Spectroscopic Ellipsometry for Photovoltaics presents various applications of the ellipsometry technique for device analyses, including optical/recombination loss analyses, real-time control and on-line monitoring of solar cell structures, and large-area structural mapping. Furthermore, this book describes the optical constants of 148 solar cell component layers, covering a broad range of materials from semiconductor light absorbers (inorganic, organic and hybrid perovskite semiconductors) to transparent conductive oxides and metals. The tabulated and completely parameterized optical constants described in this book are the most current resource that is vital for device simulations and solar cell structural analyses.
the model for low-PMD ?bers; Nicolas Gisin covered the increasingly important topic of the interaction of PMD with polarization dependent loss. Other topics that were included in the school were: "PMD models," which was covered byAntonio Mecozzi and Mark Shtaif; "Interaction of PMD with nonlinearity and chromatic dispersion," which was covered by Curtis Menyuk; "PMD measurement techniques," which was covered by Paul Williams and by Marco Schiano in two separate lectures; "Spatially resolved measurement of ?ber polarization properties," which was covered by Luca PalmieriandAndreaGaltarossa;"PMDimpactonopticalsystems,"whichwascovered by Magnus Karlsson and by Francesco Matera in two separate lectures; "Polarization effects in recirculating loops," which was covered by Brian Marks, Gary Carter, and Yu Sun; "PMD Emulation," which was covered byAlan Willner and Michelle Hauer; and, ?nally, "Applications of importance sampling to PMD," which was covered by Gino Biondini, Bill Kath, and Sarah Fogal. Dipak Chowdhury worked withArtis and VPI-two producers at that time of commercial software for modeling optical ?ber communications systems-to present a lecture that covered numerical modeling of PMD. Additionally, we had lectures on special topics by Hermann Haus, Jim Gordon, Herwig Kogelnik, and Carlo Someda. Finally, we had a poster session, which gave the lecturers the opportunity to learn something from our participants. The feedback that we received from the participants and the lecturers was ov- whelmingly positive. This success was due to the great time and energy that all the instructors put into their lectures.
This self-contained monograph provides a mathematically simple and physically meaningful model which unifies gravity, electromagnetism, optics and even some quantum behavior. The simplicity of the model is achieved by working in the frame of an inertial observer and by using a physically meaningful least action principle. The authors introduce an extension of the Principle of Inertia. This gives rise to a simple, physically meaningful action function. Visualizations of the geometryare obtained by plotting the action function. These visualizations may be used to compare the geometries of different types of fields. Moreover, a new understanding of the energy-momentum of a field emerges. The relativistic dynamics derived here properly describes motion of massive and massless objects under the influence of a gravitational and/or an electromagnetic field, and under the influence of isotropic media. The reader will learn how to compute the precession of Mercury, the deflection of light, and the Shapiro time delay. Also covered is the relativistic motion of binary stars, including the generation of gravitational waves, a derivation of Snell's Law and a relativistic description of spin. We derive a complex-valued prepotential of an electromagnetic field. The prepotential is similar to the wave function in quantum mechanics. The mathematics is accessible to students after standard courses in multivariable calculus and linear algebra. For those unfamiliar with tensors and the calculus of variations, these topics are developed rigorously in the opening chapters. The unifying model presented here should prove useful to upper undergraduate and graduate students, as well as to seasoned researchers.
With the ubiquitous use of digital imaging, a new profession has emerged: imaging engineering. Designed for newcomers to imaging science and engineering, Theoretical Foundations of Digital Imaging Using MATLAB (R) treats the theory of digital imaging as a specific branch of science. It covers the subject in its entirety, from image formation to image perfecting. Based on the author's 50 years of working and teaching in the field, the text first addresses the problem of converting images into digital signals that can be stored, transmitted, and processed on digital computers. It then explains how to adequately represent image transformations on computers. After presenting several examples of computational imaging, including numerical reconstruction of holograms and virtual image formation through computer-generated display holograms, the author introduces methods for image perfect resampling and building continuous image models. He also examines the fundamental problem of the optimal estimation of image parameters, such as how to localize targets in images. The book concludes with a comprehensive discussion of linear and nonlinear filtering methods for image perfecting and enhancement. Helping you master digital imaging, this book presents a unified theoretical basis for understanding and designing methods of imaging and image processing. To facilitate a deeper understanding of the major results, it offers a number of exercises supported by MATLAB programs, with the code available at www.crcpress.com.
This book explores recent developments in QIA and describes the application of the theory to different branches of wave physics, from plasma physics, quantum physics, and ionospheric radio wave propagation to acoustics, optics, and astrophysics. This is an up-to-the-minute exposition of the latest developments in an important new area, written by authors of outstanding reputation. A rich source of both theoretical methods and practical applications, it covers a wide range of problems of general physical significance. Until recently, there was no effective method for describing waves in weakly anisotropic inhomogeneous media. The method of quasi-isotropic approximation (QIA) of geometrical optics was developed to overcome this problem. The QIA approach bridges the gap between geometrical optics of isotropic media (Rytov method) and that of anisotropic media (Courant-Lax approach), thus providing a complete picture of the geometrical optics of inhomogeneous media.
With clear illustrations throughout and without recourse to quantum mechanics, the reader is invited to revisit unsolved problems lying at the foundations of theoretical physics. Maxwell and his contemporaries abandoned their search for a geometrical representation of the electric and magnetic fields. The wave-particle dilemma and Bose-Einstein statistical counting have resulted in unsatisfactory non-realistic interpretations. Furthermore, a simple structure of the hydrogen atom that includes hyperfine levels is still wanting. Working with the latest experimental data in photoionics a proposed solution to the wave-particle dilemma is suggested based on an array of circular-polarized rays. The Bose-Einstein counting procedure is recast in terms of distinguishable elements. Finally, a vortex model of a 'particle' is developed based on a trapped photon. This consists of a single ray revolving around a toroidal surface, and allows a geometrical definition of mass, electric potential, and magnetic momentum. With the adjustment of two parameters, values to 4 dp for the hyperfine frequencies (MHz) of hydrogen can be obtained for which a computer program is available.
This book presents a direct measurement of quantum back action, or radiation pressure noise, on a macroscopic object at room temperature across a broad bandwidth in the audio range. This noise source was predicted to be a limitation for gravitational wave interferometers in the 1980s, but it has evaded direct characterization in the gravitational wave community due to the inherent difficult of reducing thermal fluctuations below the quantum back action level. This back action noise is a potential limitation in Advanced LIGO and Advanced Virgo, and Cripe's experiment has provided a platform for the demonstration of quantum measurement techniques that will allow quantum radiation pressure noise to be reduced in these detectors. The experimental techniques Cripe developed for this purpose are also applicable to any continuous measurement operating near the quantum limit, and could lead to the possibility of observing non-classical behavior of macroscopic objects.
This text is an introductory compilation of basic concepts, methods and applications in the field of spectroscopy. It discusses new radiation sources such as lasers and synchrotrons and describes the linear response together with the basic principles and the technical background for various scattering experiments.
This book introduces the applications of laser in surface modification, such as laser cladding of Stellite alloys and metal-ceramic composites. Besides, nanomaterials including carbon nanotubes and Al2O3 nanoparticles are brought into the laser processing, to form high-temperature resistance, chemical stability, and wear- and oxidation-resistant composite coatings. The readers will get more knowledge about the basic principle and application of laser cladding and laser surface hardening technologies, and gain a deep insight into the process and characteristics of the nanomaterial-assisted laser surface enhancement. It provides references for the researchers, engineers, and students in the fields of mechanical engineering, laser processing, and material engineering.
Optoelectronic devices are now ubiquitous in our daily lives, from light emitting diodes (LEDs) in many household appliances to solar cells for energy. This handbook shows how we can probe the underlying and highly complex physical processes using modern mathematical models and numerical simulation for optoelectronic device design, analysis, and performance optimization. It reflects the wide availability of powerful computers and advanced commercial software, which have opened the door for non-specialists to perform sophisticated modeling and simulation tasks. The chapters comprise the know-how of more than a hundred experts from all over the world. The handbook is an ideal starting point for beginners but also gives experienced researchers the opportunity to renew and broaden their knowledge in this expanding field.
A System Engineer's Guide to Building an Earth Observation Camera Building Earth Observation Cameras discusses the science and technology of building an electro-optical imaging system for a space platform from concept to space qualification and in-orbit evaluation. The book provides a broad overview of various Earth imaging systems with specific examples illustrating the design and development issues that impacted the Indian Remote Sensing Satellite (IRS) cameras, and is based on the actual experience of the author, who was intimately involved with the development of cameras for the IRS program.It equips imaging system project managers, scholars, and researchers with the ability to look deeper into the systems that they are developing, and arms application scientists who use satellite imagery with a greater understanding of the technical aspects and terminology used in defining the performance of the image system. The text traces the historical development of imaging systems, reviews the evolution of Earth observation systems from a global perspective, and examines future trends. This interdisciplinary work: Presents technical issues associated with the design, fabrication, and characterization of the camera Provides a narrow focus and end-to-end solutions to all components involved in a successful camera-on-Earth observation system Covers various stages including image formation, optics, opto-mechanics, material choice, design tradeoffs, fabrication, evaluation, and finally qualifying the system for space use Building Earth Observation Cameras provides the tools needed to enable readers to better understand the concepts and challenges involved in building space-based Earth observation systems.
Optical Fiber Sensors: Advanced Techniques and Applications describes the physical principles of, and latest developments in, optical fiber sensors. Providing a fundamental understanding of the design, operation, and practical applications of fiber optic sensing systems, this book: Discusses new and emerging areas of research including photonic crystal fiber sensors, micro- and nanofiber sensing, liquid crystal photonics, acousto-optic effects in fiber, and fiber laser-based sensing Covers well-established areas such as surface plasmon resonance sensors, interferometric fiber sensors, polymer fiber sensors, Bragg gratings in polymer and silica fibers, and distributed fiber sensors Explores humidity sensing applications, smart structure applications, and medical applications, supplying detailed examples of the various fiber optic sensing technologies in use Optical Fiber Sensors: Advanced Techniques and Applications draws upon the extensive academic and industrial experience of its contributing authors to deliver a comprehensive introduction to optical fiber sensors with a strong practical focus suitable for undergraduate and graduate students as well as scientists and engineers working in the field.
The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.
Digital images have several benefits, such as faster and inexpensive processing cost, easy storage and communication, immediate quality assessment, multiple copying while preserving quality, swift and economical reproduction, and adaptable manipulation. Digital medical images play a vital role in everyday life. Medical imaging is the process of producing visible images of inner structures of the body for scientific and medical study and treatment as well as a view of the function of interior tissues. This process pursues disorder identification and management. Medical imaging in 2D and 3D includes many techniques and operations such as image gaining, storage, presentation, and communication. The 2D and 3D images can be processed in multiple dimensions. Depending on the requirement of a specific problem, one must identify various features of 2D or 3D images while applying suitable algorithms. These image processing techniques began in the 1960s and were used in such fields as space, clinical purposes, the arts, and television image improvement. In the 1970s, with the development of computer systems, the cost of image processing was reduced and processes became faster. In the 2000s, image processing became quicker, inexpensive, and simpler. In the 2020s, image processing has become a more accurate, more efficient, and self-learning technology. This book highlights the framework of the robust and novel methods for medical image processing techniques in 2D and 3D. The chapters explore existing and emerging image challenges and opportunities in the medical field using various medical image processing techniques. The book discusses real-time applications for artificial intelligence and machine learning in medical image processing. The authors also discuss implementation strategies and future research directions for the design and application requirements of these systems. This book will benefit researchers in the medical image processing field as well as those looking to promote the mutual understanding of researchers within different disciplines that incorporate AI and machine learning. FEATURES Highlights the framework of robust and novel methods for medical image processing techniques Discusses implementation strategies and future research directions for the design and application requirements of medical imaging Examines real-time application needs Explores existing and emerging image challenges and opportunities in the medical field
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine. |
You may like...
Resonant Tunneling Diode Photonics…
Charlie Ironside, Bruno Romeira, …
Paperback
R752
Discovery Miles 7 520
|