![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
"...provides the full, exciting story of optical modulators. ... a comprehensive review, from the fundamental science to the material and processing technology to the optimized device design to the multitude of applications for which broadband optical modulators bring great value. ... Especially valuable in my view is that the authors are internationally known researchers, developers, and systems people who are experts in their field, writing now, with the perspective that time offers, about their groundbreaking work. " -Dr. Rodney C. Alferness, Senior Vice President of Optical Networking Research at Lucent Technologies' Bell Labs Considered the most comprehensive book yet published on this critical subject, Broadband Optical Modulators: Science, Technology, and Applications offers an incredibly wide-ranging yet in-depth overview of the state of the art in the design and use of optical modulators. A compilation of expert insights, this book covers fundamental and practical aspects, from materials to systems, addressing historical and more recent developments. Coverage includes: Optical and electro-optic properties of traditional single crystalline lithium niobate, silicon, and III-V compound semiconductors, as well as emerging electro-optic polymers and organic nonlinear optic crystals Discussion of factors important to modulator design, fabrication, and performance Fundamental topics, such as electro-optic effect in nonlinear optic crystals and semiconductors Leaders in the field created this invaluable reference for scientific researchers involved in high-speed device research and development, especially in the areas of optical transmitters and optical modulators for fiber-optics communication systems. Helping readers master optical modulation techniques, this book will be invaluable to engineers (system/subsystem designers, product developers, and technical and project managers) and other professionals in the telecommunications and defense industries. It offers the audience-which includes graduate students-an in-depth understanding of the new modulator architectures and technologies now available, as well as the strengths, weaknesses, advantages, and trade-offs associated with each.
While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as mitigating stray light and mating systems by eye. The first three chapters of the book focus on subjects important to the design of systems using molded optics: optical design, visual optics, and stray light. Following these background chapters, the text provides in-depth information on the design and manufacture of molded plastic optics, molded glass optics, and molded infrared optics. The final chapter on testing emphasizes the special characteristics of molded optics. Experts in their particular areas, the authors draw on their considerable knowledge and real-world experiences to give a thorough account of the design and manufacture of molded plastic, glass, and infrared optics. The book will help readers improve their ability to develop systems that employ molded optics.
Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to understand modern IR detector theory and technology. He presents each topic with a brief summary of historical background followed by summary of principles underlying performance, an overview of properties, and analysis of the state of the art. Divided into four sections, the book covers fundaments of IR detection, IR thermal detectors, IR photon detectors, and focal plane arrays. It begins with a tutorial introduction to essential of different types of IR detectors and systems. The author explores the theory and technology of different thermal detectors and then moves on to the theory and technology of photon detectors. He concludes his treatment with a discussion of IR focal plane arrays where relations between performance of detector array and infrared system quality are considered. New to the Second Edition: Fundamentals of IR detection, radiometry, and flux-transfer issues needed for IR detector and system analysis Major achievements and trends in the development of IR detectors Novel uncooled detectors such as cantilever, antenna, and optically coupled detectors Type II superlattice detectors Quantum dot IR detectors Terahertz (THz) arrays and new generation of IR detectors, so-called third generation detectors The author accomplishes the difficult task of making the information accessible to a wide readership. A comprehensive analysis of the latest developments in IR detector technology and basic insight into the fundamental processes important to evolving detection techniques, the book provides the most complete and up-to-date resource of its kind, including a summary of useful data, guide to the literature, and overview of applications.
Ever since the first experimental demonstration was reported in 2000, the interest in metamaterials and left-handed media that exhibit a negative refractive index has increased exponentially. Surveying this explosive growth, Physics and Applications of Negative Refractive Index Materials covers the fundamental physical principles and emerging engineering applications of structured electromagnetic metamaterials that yield a negative refraction as well as other unexpected physical properties. It provides detailed explanations on the history, development, and main achievements of metamaterials. Making it easy to access relevant, up-to-date information on the field, the authors bring together the most important and influential papers related to metamaterials. They present the principles of negative refraction and compare the uniqueness of novel metamaterials with other media that exhibit similar properties. The book discusses the design, optimization, and testing of structured metamaterials as well as applications of metamaterials at frequencies ranging from radio wave to optical. It also explores novel concepts and phenomena, such as the perfect lens for super-resolution imaging, hyper lenses that couple the near-field to radiative modes, electromagnetic cloaking and invisibility, and near-field optical imaging. Connecting theoretical ideas to recent experimental techniques and results, this state-of-the-art book enables an understanding of the basic principles of and research contributions to metamaterials with negative refractive index and their electromagnetic properties.
The propagation of light in dispersive media is a subject of fundamental as well as practical importance. In recent years attention has focused in particular on how refractive index can vary with frequency in such a way that the group velocities of optical pulses can be much greater or much smaller than the speed of light in vacuum, or in which the refractive index can be negative. Treating these topics at an introductory to intermediate level, Fast Light, Slow Light and Left-Handed Light focuses on the basic theory and describes the significant experimental progress made during the past decade. The book pays considerable attention to the fact that superluminal group velocities are not in conflict with special relativity and to the role of quantum effects in preventing superluminal communication and violations of Einstein causality. It also explores some of the basic physics at the opposite extreme of very slow group velocities as well as stopped and regenerated light, including the concepts of electromagnetically induced transparency and dark-state polaritons. Another very active aspect of the subject discussed concerns the possibility of designing metamaterials in which the refractive index can be negative and propagating light is left-handed in the sense that the phase and group velocities are in opposite directions. The last two chapters are an introduction to some of the basic theory and consequences of negative refractive index, with emphasis on the seminal work carried out since 2000. The possibility that "perfect" lenses can be made from negative-index metamaterials-which has been perhaps the most controversial aspect of the field-is introduced and discussed in some detail.
Although photovoltaics are regarded by many as the most likely candidate for long term sustainable energy production, their implementation has been restricted by the high costs involved. Nevertheless, the theoretical limit on photovoltaic energy conversion efficiency-above 85%-suggests that there is room for substantial improvement of current commercially available solar cells, both silicon and thin-film based. Current research efforts are focused on implementing novel concepts to produce a new generation of low-cost, high-performance photovoltaics that make improved use of the solar spectrum. Featuring contributions from pioneers of next generation photovoltaic research, Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization presents a comprehensive account of the current state-of-the-art in all aspects of the field. The book first discusses topics, such as multi-junction solar cells (the method closest to commercialization), quantum dot solar cells, hot carrier solar cells, multiple quantum well solar cells, and thermophotovoltaics. The final two chapters of the book consider the materials, fabrication methods, and concentrator optics used for advanced photovoltaic cells. This book will be an essential reference for graduate students and researchers working with solar cell technology.
Stimulated Brillouin scattering (SBS) is the most important example of a stimulated scattering process-light scattering that occurs when the intensity of the light field itself affects the propagating medium. A phenomenon that has been known of for some 35 years in solid state laser research, it has recently become relevant in the optical fiber industry, due to the increasing intensity required in optical fiber cores (and their long interaction lengths). SBS is one of the major limiting factors on the amount of power that can be transmitted via an optical fiber. This book describes the underlying physics of SBS, much of which are applicable to other fields of research, including, to some extent, plasma physics. It provides references to experimental details throughout. Later chapters investigate more advanced concepts and feature the problems faced by researchers using optical fibers.
Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods. The book first builds a foundation for evaluating optical measurement methods. It explores the many terms of optical metrology and compares it to other forms of metrology, such as mechanical gaging, highlighting the limitations and errors associated with each mode of measurement at a general level. This comparison is particularly helpful to current industry users who operate the most widely applied mechanical tools. The book then focuses on each application area of measurement, working down from large area to medium-sized to submicron measurements. It describes the measurement of large objects on the scale of buildings, the measurement of durable manufactured goods such as aircraft engines and appliances, and the measurement of fine features on the micron and nanometer scales. In each area, the book covers fast, coarse measures as well as the finest measurements possible. Best practices and practical examples for each technology aid readers in effectively using the methods. Requiring no prior expertise in optical dimensional metrology, this handbook helps engineers and quality specialists understand the capabilities and limitations of optical metrology methods. It also shows them how to successfully apply optical metrology to a vast array of current engineering and scientific problems.
This book gathers high-quality papers presented at the International Symposium on Optomechatronic Technology (ISOT 2018), which was organized by the International Society for Optomechatronics (ISOM) and Centro de Investigaciones en Optica (CIO) in Cancun, Mexico on November 5-8, 2018. The respective papers address the evolution of optomechatronic devices and systems, and their implementation in problem-solving and various other applications. Moreover, they cover a broad range of topics at the interface of optical, mechanical and electrical technologies and methods.
As the race to build the world's first quantum computer is coming to an end, the race to build the quantum internet has just started. This book leverages the author's unique insights into both the Chinese and American quantum programs. It begins with the physics and history of the quantum internet and ends with the latest results in quantum computing and quantum networks. The Chinese quantum Sputnik moment. The U.S. National Quantum Initiative. What's up with Quantum Computing Supremacy? The Race to Build the Quantum Internet. Where will Quantum Technology be Tomorrow? Written by a renowned quantum physicist, this book is for everyone who is interested in the rapidly advancing field of Quantum Technology - The Second Quantum Revolution. The 2016 launch of the Chinese quantum satellite Mozi was a quantum Sputnik moment. The United States went from thinking it was ten years ahead of the Chinese to the realization that it was ten years behind them. This quantum gap led to the U.S. National Quantum Initiative, launched in 2018. Since then, the race to build the quantum internet has taken off at breakneck speed.
This book explores up-to-date research trends and achievements on low-power and high-speed technologies in both electronics and optics. It offers unique insight into low-power and high-speed approaches ranging from devices, ICs, sub-systems and networks that can be exploited for future mobile devices, 5G networks, Internet of Things (IoT), and data centers. It collects heterogeneous topics in place to catch and predict future research directions of devices, circuits, subsystems, and networks for low-power and higher-speed technologies. Even it handles about artificial intelligence (AI) showing examples how AI technology can be combined with concurrent electronics. Written by top international experts in both industry and academia, the book discusses new devices, such as Si-on-chip laser, interconnections using graphenes, machine learning combined with CMOS technology, progresses of SiGe devices for higher-speed electronices for optic, co-design low-power and high-speed circuits for optical interconnect, low-power network-on-chip (NoC) router, X-ray quantum counting, and a design of low-power power amplifiers. Covers modern high-speed and low-power electronics and photonics. Discusses novel nano-devices, electronics & photonic sub-systems for high-speed and low-power systems, and many other emerging technologies like Si photonic technology, Si-on-chip laser, low-power driver for optic device, and network-on-chip router. Includes practical applications and recent results with respect to emerging low-power systems. Addresses the future perspective of silicon photonics as a low-power interconnections and communication applications.
In the past ten years, heteroepitaxy has continued to increase in importance with the explosive growth of the electronics industry and the development of a myriad of heteroepitaxial devices for solid state lighting, green energy, displays, communications, and digital computing. Our ever-growing understanding of the basic physics and chemistry underlying heteroepitaxy, especially lattice relaxation and dislocation dynamic, has enabled an ever-increasing emphasis on metamorphic devices. To reflect this focus, two all-new chapters have been included in this new edition. One chapter addresses metamorphic buffer layers, and the other covers metamorphic devices. The remaining seven chapters have been revised extensively with new material on crystal symmetry and relationships, III-nitride materials, lattice relaxation physics and models, in-situ characterization, and reciprocal space maps.
2D Materials for Infrared and Terahertz Detectors provides an overview of the performance of emerging detector materials, while also offering, for the first time, a comparison with traditional materials used in the fabrication of infrared and terahertz detectors. Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively researched. The extraordinary electronic and optical properties allow graphene and other 2D materials to be promising candidates for infrared (IR) and terahertz (THz) photodetectors, and yet it appears that the development of new detectors using these materials is still secondary to those using traditional materials. This book explores this phenomenon, as well as the advantages and disadvantages of using 2D materials. Special attention is directed toward the identification of the most-effective hybrid 2D materials in infrared and terahertz detectors, as well as future trends. Written by one of the world's leading researchers in the field of IR optoelectronics, this book will be a must-read for researchers and graduate students in photodetectors and related fields. Features * Offers a comprehensive overview of the different types of 2D materials used in fabrication of IR and THz detectors, and includes their advantages/disadvantages * The first book to compare new detectors to a wide family of common, commercially available detectors that use traditional materials.
This thirteenth volume in the PUILS series covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The series delivers up-to-date reviews of progress in ultrafast intense laser science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Typically, each chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
This book presents a collection of memoir papers on the development of modern and contemporary optics and optoelectronics in China from the 18th to 20th centuries. The papers were written by famous scientists in China, including members of the Chinese Academy of Sciences and the Chinese Academy of Engineering, sharing their experience in different fields of optics and optoelectronics development. This is a unique book in understanding the natural science history of optics and optoelectronics. It gives you the general idea about how the western optical science spread to China in the 17th to 18th century; the cradle of the contemporary optics in China; Birth, development and application of lasers in China; high energy and high power lasers for laser antiballistic missile and laser nuclear fusion; development of Chinese optical communication and optical information storage; laser and infrared optics research for space science; development of Chinese optical instruments, etc.
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition: Reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications Discusses the recently discovered field of spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means Explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts Introduces the concept of single-domain-nanomagnet-based computing, an ultra-energy-efficient approach to compute and store information using nanomagnets, offering a practical rendition of single-spin logic architecture ideas and an alternative to transistor-based computing hardware Features many new drill problems, and includes a solution manual and figure slides with qualifying course adoption Still the only known spintronics textbook written in English, Introduction to Spintronics, Second Edition is a must read for those interested in the science and technology of storing, processing, and communicating information via the spin degree of freedom of electrons.
This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy.High-Order Harmonic Generation in Laser Plasma Plumes is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containing plumes and resonance-induced enhancement of harmonic yield. It can be used as an advanced monograph for researchers and graduate students working in the field of nonlinear spectroscopy. It is also suitable for researchers in laser physics and nonlinear optics who wish to have an overview of the advanced achievements in laser ablation-induced high-order harmonic generation spectroscopy. The carefully presented details of this book will be of value to research devoted to the understanding and control frequency conversion of laser pulses in plasma plumes.The studies described in this book pave the way for the development of a new method of materials studies using the laser ablation-induced high-order harmonic generation spectroscopy, which can exploit the spectral and structural properties of various solid-state materials through their ablation and further propagation of short laser pulse through laser-produced plasma and generation of high-order harmonics.
Thin-film coatings are universal on optical components such as displays, lenses, mirrors, cameras, and windows and serve a variety of functions such as antireflection, high reflection, and spectral filtering. Designs can be as simple as a single-layer dielectric for antireflection effects or very complex with hundreds of layers for producing elaborate spectral filtering effects. Starting from basic principles of electromagnetics, design techniques are progressively introduced toward more intricate optical filter designs, numerical optimization techniques, and production methods, as well as emerging areas such as phase change materials and metal film optics. Worked examples, Python computer codes, and instructor problem sets are included. Key Features: Starting from the basic principles of electromagnetics, topics are built in a pedagogic manner toward intricate filter designs, numerical optimization and production methods. Discusses thin-film applications and design from simple single-layer effects to complex several-hundred-layer spectral filtering. Includes modern topics such as phase change materials and metal film optics. Includes worked examples, problem sets, and numerical examples with Python codes.
Head, Eye, and Face Personal Protective Equipment: New Trends, Practice, and Applications presents protective equipment in the context of the latest design trends, materials, and technologies. It informs the reader using basic safety principles to avoid issues with commonly used personal protective equipment (PPE), such as helmets and eye and face protectors. It provides the latest design trends in eye and face protectors to avoid optical hazards and for use in variable lighting conditions. Features: * Fills the gap on current solutions of PPE and occupational safety * Educates in reducing risk connected with using industrial safety gear * Helpful to optometrists in the selection of eye protection for people with visual impairments * Instructs the reader on choosing smart materials and safety products * Provides best practices for checking the technical condition of the equipment This book is essential for the safety professional and medical experts in the field. It provides an interdisciplinary approach to personal protective equipment using new technologies in the field. "The monograph Head, Eye, and Face Personal Protective Equipment - New Trends, Practice and Applications is a complementary and thoughtful but selected compilation of the most relevant information concerning protective helmets as well as eye and face protection. The compilation of these two protection types is the result of the common use of both protective helmets and eye and face protectors. This requires their full compatibility, both in terms of ensuring optimum safety and comfort of use. The authors have chosen the material according to the needs of people directly responsible for safety at work and users of those protectors. The main aim of the work is to popularise knowledge in the field of construction, research methods, selection and use of protective helmets and eye and face protectors. In terms of use, the authors emphasise the necessity of independent control, i.e. checking the technical condition of the equipment used by the end users. The presented monograph includes the current state of knowledge in this scope, extended by the results and summaries of the authors' own research. All requirements and research methods are given based on European (EN), international (ISO) standards and standards operating in different geographical areas. The monograph also encompasses new trends in the design of protective helmets and eye and face protectors. All this allows me to emphasize the uniqueness of this monograph in relation to previous publications in this field, both in terms of the scope and selection of information concerning protective helmets and eye and face protectors." - Ryszard Korycki, Lodz University of Technology
This book is a detailed description of all the aspects of ultrahigh speed optical transmission technology. Ultrahigh-speed optical transmission technology is a key technology for increasing communication capacity. The devices developed for ultrahigh-speed optical transmission are not limited to communication applications only. They are key devices for high-speed optical signal processing, i.e. monitoring, measurement and control, and will thus give a wide technological basis for innovative science and technology. All these aspects of ultrahigh-speed optical transmission technology are described in detail in this book.
Biomimetic photonics is a burgeoning field. Biologists are finding and describing a whole menagerie of unique and astonishingly complex nano- and microstructures in fauna and flora. Material scientists are developing novel multifunctional and hierarchical structures with a wide variety of post-nano era photonics applications. Mathematicians and computer scientists are using computer models and simulations to understand the underlying principles of biomimetic structures. However, concepts, structures, and phenomena that are well known in one community are quite unknown in others. Exploring a biomimetic approach to developing photonic devices and structures, Biomimetics in Photonics discusses not only the role of and results of biomimicry in engineering, but also the true understanding of natural processes and the application of these techniques to established technologies. Featured Topics Photonic structures in flowers, leaves and fruits and inorganic structures produced in aquatic environment by diatoms, sponges, and shells Mechanisms for biomineralization and how natural structures can be synthetically modified or even used as templates for artificial photonic materials Biological photonic structures in beetles and butterflies and their bio-inspired applications, including anti-reflecting surfaces, iridescent viruses, light reflection, metallic effects, and infrared sensors Suitable for researchers and graduate students, the book does more than describe how to extract good design from nature-Biomimetics in Photonics highlights natural design techniques in context, allowing for a more complete modeling picture. It demonstrates the possibilities and challenges in the move from a laboratory environment to industrial scale production of biomimetic photonic structures.
Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on Laser assisted Fabrication' is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone. |
You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
|