![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
The second edition of this successful textbook provides an
up-to-date account of the optical physics of solid state materials.
The basic principles of absorption, reflection, luminescence, and
light scattering are covered for a wide range of materials,
including insulators, semiconductors and metals. The text starts
with a review of classical optics, and then moves on to the
treatment of optical transition rates by quantum theory. In
addition to the traditional discussion of crystalline materials,
glasses and molecular solids are also covered.
Bidirectional transmission over optical fibre networks may yield a large cost reduction because of the reduction of the network infrastructure by a factor two and the potential cost reduction by an integrated transceiver design. It may also provide a cost-effective way to upgrade distribution networks by adding bidirectional channels. This book is the first to provide a comprehensive overview of bidirectional transmission in optical networks. It handles physical aspects: the behaviour of the fibre itself in bidirectional transmission transmission aspects: the behaviour and design of bidirectional systems and network aspects: the influence of bidirectional transmission on network design. GBP/LISTGBP Practical guidelines are also given for bidirectional system design. Audience:This book is aimed at designers, builders and operators of optical networks, e.g. the manufacturers of optical transmission systems, public-network operators, developers of local-area networks, cable-television operators, etcetera. The intended level of readership is graduate level in physics or electrical engineering.
This book covers a comprehensive range of topics on the physical mechanisms of LEDs (Light Emitting Diodes), scattering effects, challenges in fabrication and efficient enhancement techniques in organic and inorganic LEDs. It deals with various reliability issues in organic/inorganic LEDs like trapping and scattering effects, packaging failures, efficiency droops, irradiation effects, thermal degradation mechanisms etc. Features: Provides insights into the improvement of performance and reliability of LEDs Highlights the optical power improvement mechanisms in LEDs Covers the challenges in fabrication and packaging of LEDs Discusses pertinent failures and degradation mechanisms Includes droop minimization techniques This book is aimed at researchers and graduate students in LEDs, illumination engineering, optoelectronics, and polymer/organic materials.
Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10 DEGREES16 W/cm are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrodinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrodinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenomena, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way the theoretical background for state of the art experiments with strong and short laser pulses is given. The text is augmented by more than thirty exercises, whose worked-out solutions are given in the last chapter. Some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature."
Optical fibres have for almost three decades been fabricated from solid glass. It was, therefore, a radical change that took place, when researchers in the late 90s started to fabricate hair-thin optical fibres with numerous microscopic air holes running along the length of the fibres. These microstructured fibres did not only mark the introduction of tailored materials with unique spectral properties in fibre optics, but it also opened the perspective of the applicability of photonic bandgap materials at optical wavelengths. In this respect, a completely new guiding mechanism was demonstrated, and a revolution in fibre optics had started. Photonic Crystal Fibres describes the fundamental properties of these new optical waveguides, outlines how they are fabricated, and how they are treated from a theoretical and numerical point of view. A detailed description of the different classes of photonic crystal fibres is given, and a spectrum of different applications and new fibre types are presented. Photonic Crystal Fibres describes the fundamental properties of the optical waveguides known under the terms of photonic crystal fibres, microstructured fibres, or holey fibres. treated from a theoretical and numerical point of view. The book presents a detailed description of the different classes of photonic crystal and photonic bandgap fibres, and it broadens out a spectrum of novel applications and new fibre types.
Quantum information- the subject- is a new and exciting area of
science, which brings together physics, information theory,
computer science and mathematics. Quantum Information- the book- is
based on two successful lecture courses given to advanced
undergraduate and beginning postgraduate students in physics. The
intention is to introduce readers at this level to the fundamental,
but offer rather simple, ideas behind ground-breaking developments
including quantum cryptography, teleportation and quantum
computing. The text is necessarily rather mathematical in style,
but the mathematics nowhere allowed priority over the key physical
ideas. My aim throughout was to be as complete and self- contained
but to avoid, as far as possible, lengthy and formal mathematical
proofs. Each of the eight chapters is followed by about forty
exercise problems with which the reader can test their
understanding and hone their skills. These will also provide a
valuable resource to tutors and lectures.
Optical interference plays a prominent role in scientific discovery and modern technology. Historically, optical interference was instrumental in establishing the wave nature of light. Nowadays, optical interference continues to be of great importance in areas such as spectroscopy and metrology. Thus far, the physical optics literature has discussed the interference of optical waves with the same single frequency (i.e., homodyne interference) and the interference of optical waves with two different frequencies (i.e., heterodyne interference), but it hardly ever deals with the interference of optical waves whose frequencies are continuously modulated (i.e., frequency-modulated continuous-wave int- ference). Frequency-modulated continuous-wave (FMCW) interference, which was originally investigated in radar in the 1950s, has been recently introduced in optics. The study of optical FMCW interference not only updates our kno- edge about the nature of light but also creates a new advanced technology for precision measurements. This book introduces the principles, applications, and signal processing of optical FMCW interference. The layout of this book is straightforward. Chapter 1 gives a short introduction to optical FMCW interferometry by considering the historical development, general concepts, and major advantages provided by this new technology. Chapter 2 focuses on the principles of optical FMCW interference. Three different versions of optical FMCW interference- sawtooth-wave optical FMCW interference, triangular-wave optical FMCW interference, and sinusoidal-wave optical FMCW interference-are discussed in detail. Moreover, multiple-beam optical FMCW interference and multip- wavelength optical FMCW interference are also discussed by this chapter.
The purposes of this book are twofold. First, the various different methods of accessing the THz range discussed here should serve to convince the reader that there have been qualitative and significant improvements over older, more conventional techniques. It should be clear that these improvements enable practical "real-world" applications of THz technology, in a manner which would not have been possible before. The reader should be convinced that this is a realistic goal within the next few years. Second, the demonstrations and feasibility tests described here should serve as compelling evidence of the utility of such devices. Owing to the unique characteristics of THz radiation and its interaction with materials, these devices have substantial advantages over other, competing technologies in a number of different areas.
This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.
MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. * Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement. * Discuss biocompatibility, suitability, and toxic effects. * Details innovations, applications, opportunities, and future directions in EMI shielding applications. This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding.
• Readers will gain an understanding of the optical technology, material science, and semiconductor device technology behind image acquisition devices • Research on image information is stable but slowly growing and several universities globally teach related courses for which this is valuable supplementary reading • This book offers a unique focus on the devices used in image sensors and displays
This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.
A Powerful Window into Cosmic Evolution Terahertz (THz) observations of interstellar atoms, molecules, and dust serve as powerful probes of the conditions within the interstellar medium that permeates our galaxy, providing insights into the origins of stars, planets, galaxies, and the Universe. Taking a cross-disciplinary approach to the subject, Terahertz Astronomy explores THz astrophysics and the technologies that make this rapidly evolving field possible. The first four chapters of the book discuss the origin and interpretation of THz light in astrophysical sources. The remaining five chapters present an overview of the technologies used to collect and detect THz light. Every chapter contains worked-out examples and exercises. The author explains each topic as intuitively as possible and includes the equations needed for real-life astrophysical applications. In just a few years, the number of active THz researchers has substantially grown due to increased interest in terrestrial remote sensing at THz frequencies. This book provides researchers with both the background science and technology to interpret THz observations and design, build, and deploy THz astronomical instrumentation.
This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
First and pioneering in the field Presents an authoritative description of a young field of research, with a long life ahead Clearly shows the role of multidisciplinary and team work, particularly addressed by combining theoretical/experimental expertise
This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.
The Encyclopedia of Modern Optics, Second Edition, Five Volume Set provides a wide-ranging overview of the field, comprising authoritative reference articles for undergraduate and postgraduate students and those researching outside their area of expertise. Topics covered include classical and quantum optics, lasers, optical fibers and optical fiber systems, optical materials and light-emitting diodes (LEDs). Articles cover all subfields of optical physics and engineering, such as electro-optical design of modulators and detectors. This update contains contributions from international experts who discuss topics such as nano-photonics and plasmonics, optical interconnects, photonic crystals and 2D materials, such as graphene or holy fibers. Other topics of note include solar energy, high efficiency LED's and their use in illumination, orbital angular momentum, quantum optics and information, metamaterials and transformation optics, high power fiber and UV fiber lasers, random lasers and bio-imaging.
This book discusses in detail fiber optic communications systems. It describes major components including fibers, cables, emission sources, detectors, modulators, and repeaters, as well as total system designs.
This book originates from lectures delivered at the First International School "Laser-surface interactions for new materials production: tailoring structure and properties" that was held in San Servolo Island, Venice (Italy) from 13 to 20 July, 2008 under the direction of A. Miotello and P. M. Ossi. The purpose of the School was to provide the students (mainly PhD) with a compreh- sive overview of basic aspects and applications connected to the laser-matter interaction both to modify surface properties and to prepare new materials by pulsed laser deposition (PLD) at the nanometer scale. The ?eld is re- tively young and grewrapidly in the last 10 years because of the possibility of depositingvirtuallyanymaterial,includingmulti-component?lms,preserving the composition of the ablated target and generally avoiding post-deposition thermaltreatments. Inaddition,theexperimentalsetupforPLDiscompatible with in situ diagnostics of both the plasma and the growing ?lm. The basic laser-surface interaction mechanisms, possibly in an ambient atmosphere, either chemically reactive or inert, are a challenge to sci- tists, while engineers are mostly interested in the characteristics of the deposited materials and the possibility of tailoring their properties through an appropriate tuning of the deposition parameters.
Of interest to scientists working in the field of optics or nonlinear physics, this book gives an overview of current developments in nonlinear photorefractive optics. It dicusses exciting discoveries, with special emphasis on transverse effects such as spatial soliton formation and interaction, spontaneous pattern formation and pattern competition in active feedback systems. Different aspects of potential applications, such as wave guiding in adaptive photorefractive solitons and techniques for pattern control for information processing, are also described. The author Professor Denz received the Lise Meitner Prize in 1993 for her dissertation on photorefractive neural networks and in 1999 the Adolf Messer Prize for the development of an optical motion detection filter.
Quantum optics, i.e. the interaction of individual photons with
matter, began with the discoveries of Planck and Einstein, but in
recent years, it has expanded beyond pure physics to become an
important driving force for technological innovation. This book
serves the broader readership growing out of this development by
starting with an elementary description of the underlying physics
and then building up a more advanced treatment. The reader is led
from the quantum theory of the simple harmonic oscillator to the
application of entangled states to quantum information
processing.
This book focuses on recent research and developments on optical communications. The chapters present different aspects of optical communication systems, comprising high capacity transmission over long distances, coherent and intensity modulated technologies, orthogonal frequency-division multiplexing, ultrafast switching techniques, and photonic integrated devices. Digital signal processing and error correction techniques are also addressed. The content is of interest to graduate students and researchers in optical communications.
Covers the broad area of nano-optical spectroscopy from the perspective of putting the concepts and innovations in the field to use Discusses entire spectra of near-field optics and spectroscopy using light Includes dielectric nanophotonics and optical confinement Studies acoustic phonon confinement for analysis of chemical, biological, and other materials Explores gas/chemical sensing using surface plasmon resonance (SPR) in the Kretschmann configuration
In this book, computational optical phase imaging techniques are presented along with Matlab codes that allow the reader to run their own simulations and gain a thorough understanding of the current state-of-the-art. The book focuses on modern applications of computational optical phase imaging in engineering measurements and biomedical imaging. Additionally, it discusses the future of computational optical phase imaging, especially in terms of system miniaturization and deep learning-based phase retrieval. |
![]() ![]() You may like...
Recent Progress in Few-Body Physics…
N. A. Orr, M. Ploszajczak, …
Hardcover
R4,602
Discovery Miles 46 020
Theory and Simulation in Physics for…
Elena V. Levchenko, Yannick J. Dappe, …
Hardcover
R4,246
Discovery Miles 42 460
|