|  |  Welcome to Loot.co.za!  
				Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search | Your cart is empty | ||
| Books > Science & Mathematics > Physics > Optics (light) 
 
 Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 1960s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source. 
 This book highlights many fundamental aspects of optical fiber transmission engineering while also focusing on current state of the art applications and working examples of digital coherent optical communications. Major engineering themes are reviewed and analyzed in this book, including spectral and time-domain characteristics of multi-level pseudo-random PAM signals, optical QAM and SSB complex modulations and impulse response engineering of linear amplifiers used in next-generation Gbaud transmission systems. This book is balanced between theoretical and numerical simulation approaches, showing numerous working examples developed in Matlab. Presents an in-depth analysis of pseudo-random multi-level signals and high-order complex modulations to support coherent terabit transmission systems; Provides a unified approach to challenging engineering issues encountered in the design of Giga-baud coherent optical transmission systems using high-order complex modulation formats; Reviews engineering themes and provides in-depth analysis, modeling and quantitative examples and solutions of state of the art and future applications. 
 This thesis presents a systematic discussion of experimental approaches to investigating the nonlinear interaction of ultrashort visible strong fields with dielectrics directly in the time domain. The key finding is the distinctly different peak-intensity dependence of the light-matter energy transfer dynamics on the one hand, and the observed transient optical and electronic modifications on the other. As the induced electron dynamics evolve on sub-femtosecond timescales, real-time spectroscopy requires attosecond temporal resolution. This allows a range of parameters to be identified where the optical properties of the samples exposed to ultrashort light fields suffer dramatic changes allowing signal metrology while real absorption leading to dissipation is essentially absent. These findings indicate the feasibility of efficient optical switching at frequencies several orders of magnitude faster than current state-of-the-art electronics and thus have far-reaching technological consequences. 
 Optical media are now widely used in the telecommunication networks, and the evolution of optical and optoelectronic technologies tends to show that their wide range of techniques could be successfully introduced in shorter-distance interconnection systems. This book bridges the existing gap between research in optical interconnects and research in high-performance computing and communication systems, of which parallel processing is just an example. It also provides a more comprehensive understanding of the advantages and limitations of optics as applied to high-speed communications. Audience: The book will be a vital resource for researchers and graduate students of optical interconnects, computer architectures and high-performance computing and communication systems who wish to understand the trends in the newest technologies, models and communication issues in the field. 
 This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research. 
 This thesis represents a breakthrough in our understanding of the noise processes in Microwave Kinetic Inductance Detectors (MKIDs). While the detection of ultraviolet to near-infrared light is useful for a variety of applications from dark matter searches to biological imaging and astronomy, the performance of these detectors often limits the achievable science. The author's work explains the limits on spectral resolution broadening, and uses this knowledge to more than double the world record spectral resolution for an MKID suitable for optical and near-IR astrophysics, with emphasis on developing detectors for exoplanet detection. The techniques developed have implication for phonon control in many different devices, particularly in limiting cosmic ray-induced decoherence in superconducting qubits. In addition, this thesis is highly accessible, with a thorough, pedagogical approach that will benefit generations of students in this area. 
 This book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals. 
 This book systematically describes the weld pool behavior in laser welding and its influencing factors from the perspectives of testing technology, theoretical calculation and process simulation technology, physical state transformation behavior of weld pools, and the impact of technical conditions on the weld pool behavior. The book covers extensive research achievements made in China in this field, some of which represent the latest cutting-edging researches conducted by the authors' research team. These latest research efforts mainly relate to the weld pool behavior of dual-beam laser welding, laser welding with filler wires, full-penetration laser welding of very-thick parts, and laser welding in vacuum and low vacuum conditions. The book is intended for undergraduate, graduate students and researchers who are interested in laser welding. 
 "Quantum Theory of Near-field Electrodynamics" gives a self-contained account of the fundamental theory of field-matter interaction on a subwavelength scale. The quantum physical behavior of matter (atoms and mesoscopic media) in both classical and quantum fields is treated. The role of local-field effects and nonlocal electrodynamics, and the tight links to the theory of spatial photon localization are emphasized. The book may serve as a reference work in the field, and is of general interest for physicists working in quantum optics, mesoscopic electrodynamics and physical optics. The macroscopic and microscopic classical theories form a good starting point for the quantum approach, and these theories are presented in a manner appropriate for graduate students entering near-field optics. 
 Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable quantities such as quantum correlation functions are given as phase space integrals. Finally, the phase space variables are replaced by time dependent stochastic variables satisfying Langevin stochastic equations obtained from the Fokker-Planck equation, with stochastic averages giving the measurable quantities. Second, a quantum field approach is treated, the density operator being represented by a distribution functional of field functions which replace field annihilation, creation operators, the distribution functional satisfying a functional FPE, etc. A novel feature of this book is that the phase space variables for fermions are Grassmann variables, not c-numbers. However, we show that Grassmann distribution functions and functionals still provide equations for obtaining both analytic and numerical solutions. The book includes the necessary mathematics for Grassmann calculus and functional calculus, and detailed derivations of key results are provided. 
 This monograph explores classical electrodynamics from a geometrical perspective with a clear visual presentation throughout. Featuring over 200 figures, readers will delve into the definitions, properties, and uses of directed quantities in classical field theory. With an emphasis on both mathematical and electrodynamic concepts, the author's illustrative approach will help readers understand the critical role directed quantities play in physics and mathematics. Chapters are organized so that they gradually scale in complexity, and carefully guide readers through important topics. The first three chapters introduce directed quantities in three dimensions with and without the metric, as well as the development of the algebra and analysis of directed quantities. Chapters four through seven then focus on electrodynamics without the metric, such as the premetric case, waves, and fully covariant four-dimensional electrodynamics. Complementing the book's careful structure, exercises are included throughout for readers seeking further opportunities to practice the material. Directed Quantities in Electrodynamics will appeal to students, lecturers, and researchers of electromagnetism. It is particularly suitable as a supplement to standard textbooks on electrodynamics. 
 This book offers a comprehensive and complete description of a new scheme to stabilize the power of a laser on a level needed for high precision metrology experiments. The novel aspect of the scheme is sensing power fluctuations via the radiation pressure driven motion they induce on a micro-oscillator mirror. It is shown that the proposed technique can result in higher signals for power fluctuations than what is achieved by a direct power detection, and also that it enables the generation of a strong bright squeezed beam. The book starts with the basics of power stabilization and an overview on the current state of art. Then, detailed theoretical calculations are performed, and the advantages of the new scheme are highlighted. Finally, a proof-of-principle experiment is described and its results are analyzed in details. The success of the work presented here paves a way for achieving high power stability in future experiments and is of interest for high precision metrology experiments, like gravitational wave detectors, and optomechanical experiments. Nominated as an outstanding PhD thesis by the Gravitational Wave International Committee. 
 
 This book explores the possibility of using azimuthal Walsh filters as an effective tool for manipulating far-field diffraction characteristics near the focal plane of rotationally symmetric imaging systems. It discusses the generation and synthesis of azimuthal Walsh filters, and explores the inherent self-similarity presented in various orders of these filters, classifying them into self-similar groups and sub-groups. Further, it demonstrates that azimuthal Walsh filters possess a unique rotational self-similarity exhibited among adjacent orders. Serving as an atlas of diffraction phenomena with pupil functions represented by azimuthal Walsh filters of different orders, this book describes how orthogonality and self-similarity of these filters could be harnessed to sculpture 2D and 3D light distributions near the focus. 
 This book looks at advanced nanocomposites, introducing long-awaited concepts towards bridging the gap between nanostructured optical materials and next-generation imaging systems. It investigates nanocomposites as bulk optical materials and highlights the immense potential they hold for real-world optical elements and systems, such as smartphone cameras. It covers the full spectrum of nanocomposite optical materials from their fundamental properties to analytical modeling and detailed application examples. This book also provides an in-depth discussion of the role these new materials play in the development of broadband flat optics - diffractive optical elements used for enhancing high-end broadband imaging systems. Written by an industry expert, this book seamlessly connects fundamental research and real-world applications. It is the ideal guide both for optical engineers working towards integrating new technologies, and researchers involved with fundamental research on optical materials. 
 This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts. 
 This classroom-tested textbook provides a self-contained one-semester course in semiconductor physics and devices that is ideal preparation for students to enter burgeoning quantum industries. Unlike other textbooks on semiconductor device physics, it provides a brief but comprehensive introduction to quantum physics and statistical physics, with derivations and explanations of the key facts that are suitable for second-year undergraduates, rather than simply postulating the main results. The book is structured into three parts, each of which can be covered in around ten lectures. The first part covers fundamental background material such as quantum and statistical physics, and elements of crystallography and band theory of solids. Since this provides a vital foundation for the rest of the text, concepts are explained and derived in more detail than in comparable texts. For example, the concepts of measurement and collapse of the wave function, which are typically omitted, are presented in this text in language accessible to second-year students. The second part covers semiconductors in and out of equilibrium, and gives details which are not commonly presented, such as a derivation of the density of states using dimensional analysis, and calculation of the concentration of ionized impurities from the grand canonical distribution. Special attention is paid to the solution of Poisson's equation, a topic that is feared by many undergraduates but is brought back down to earth by techniques and analogies from first-year physics. Finally, in the third part, the material in parts 2 and 3 is applied to describe simple semiconductor devices, including the MOSFET, the Schottky and PN-junction diodes, and optoelectronic devices. With a wide range of exercises, this textbook is readily adoptable for an undergraduate course on semiconductor physics devices, and with its emphasis on consolidating and applying knowledge of fundamental physics, it will leave students in engineering and the physical sciences well prepared for a future where quantum industries proliferate. 
 This book provides an in-depth description and discussion of different multi-modal diagnostic techniques for cancer detection and treatment using exact optical methods, their comparison, and combination. Coverage includes detailed descriptions of modern state of design for novel methods of optical non-invasive cancer diagnostics; multi-modal methods for earlier cancer diagnostic enhancing the probability of effective cancer treatment; modern clinical trials with novel methods of clinical cancer diagnostics; medical and technical aspects of clinical cancer diagnostics, and long-term monitoring. Biomedical engineers, cancer researchers, and scientists will find the book to be an invaluable resource. Introduces optical imaging strategies; Focuses on multimodal optical diagnostics as a fundamental approach; Discusses novel methods of optical non-invasive cancer diagnostics. 
 This proceedings volume contains selected and expanded contributions presented at the 6th International Symposium of Space Optical Instruments and Applications, held in Delft, the Netherlands on Sep 24th-25th, 2019. The meeting was organized by the Sino-Holland Space Optical Instruments Joint Laboratory and supported by TU Delft.The symposium focused on key innovations of space-based optical instruments and applications, and the newest developments in theory, technology and applications in optics, in both China and Europe. It thus provided a platform for exchanges on the latest research and current and planned optical missions. The major topics covered in these conference proceedings are: space optical remote sensing system design; advanced optical system design and manufacturing; remote sensor calibration and measurement; remote sensing data processing and information retrieval; and remote sensing data applications. 
 This book is intended for textile designers, fashion designers, and for those interested in the integration of graphic design with textile surface printing. The book discusses how abstract graphic designs with intense color palette range work on different types of fabrics, will be beneficial for designers. The book provides beautiful illustrations of abstract designs that can be used directly for textile printing and also acts as inspiration (or motivation) for development of new designs. Abstract designs represent an accurate depiction of a visual reality and uses shapes, colors and forms to achieve its effect. This book provides illustrations that show the importance of color and color combinations with bright, warm and dull colors. The book presents flawless illustrations with great harmony between the diverse shapes and overall color combinations. All the illustrations in this book are explained briefly. The illustrations can also be used in other areas like wall paper design, packaging design, ceramic design and many more. 
 This book highlights the properties of advanced materials suitable for realizing THz devices, circuits and systems, and processing and fabrication technologies associated with those. It also discusses some measurement techniques exclusively effective for THz regime, newly explored materials and recently developed solid-state devices for efficient generation and detection of THz waves, potentiality of metamaterials for implementing THz passive circuits and bio-sensors, and finally the future of silicon as the base material of THz devices. The book especially focuses on the recent advancements and several research issues related to THz materials and devices; it also discusses theoretical, experimental, established, and validated empirical works on these topics. 
 This book presents a state-of-the-art overview of the major aspects involved in the science, technology and applications of ceramics, glasses and glass-ceramics. After providing an historical perspective of the development and use of ceramics and glasses along the Silk Road, the theoretical background and fabrication techniques of such materials are described and discussed. A special focus is dedicated to emerging high-tech applications in various fields, including medicine, energy, optics and photonics, sensors, sustainability and circular economy. The chapters are written by leading experts in their respective fields and highlight the contemporary challenges associated to each topic. This book will serve as a valuable reference for both early-stage and skilled researchers as well as industry professionals interested in the broad field of glasses and ceramics. 
 Features • Discusses novel methods of cancer diagnostics and cancer treatment. • Details non and minimally-invasive photonics techniques. • Explores the applications of machine learning and artificial intelligence to these novel techniques. 
 
 This book helps dispel the notion that collective phenomena, which have become increasingly important in modern storage rings, are an obscure and inaccessible topic. The book serves as a valuable guide on how to improve synchrotrons and other storage rings. Despite an emphasis on synchrotron light sources, the basic concepts presented here are valid for other facilities as well. 
 This book offers a comprehensive introduction in to the various theories of colour and how they developed over the centuries and millennia. As colour is the perception of light by our brains, the book captures not only the physical phenomena but also psychological and philosophical aspects of colours. It starts with ancient studies of Greek philosophers and their insights into light and mirrors, then reviews the theory of colors in the middle ages in Europe and Middle East. The last big part of the book explains the theories of colours by modern scientists and philosophers, starting with Isaac Newton and ending colour schemes of modern digital pictures. |     You may like...
	
	
	
		
			
				Attractors and Higher Dimensions in…
			
			
		
	
	 
		
			Gennadiy Vladimirovich Zhizhin
		
		Hardcover
		
		
			
				
				
				
				
				
				R4,111
				
				Discovery Miles 41 110
			
			
		
	 
	
	
	
		
			
			
				Promoting Economic and Social…
			
		
	
	 
		
			Oscar Bernardes, Vanessa Amorim
		
		Hardcover
		
		
			
				
				
				
				
				
				R6,648
				
				Discovery Miles 66 480
			
			
		
	 
	
	
	
		
			
				Bacterial Artificial Chromosomes…
			
			
		
	
	 
		
			Shaying Zhao, Marvin Stodolsky
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,692
				
				Discovery Miles 26 920
			
			
		
	 
	
	
	
		
			
			
				Statistics for Applied Behavior Analysis…
			
		
	
	 
		
			David J. Cox, Jason C. Vladescu
		
		Paperback
		
		
			
				
				
				
				
				
				R1,635
				
				Discovery Miles 16 350
			
			
		
	 
	
	
	
		
			
				Foundations of the Mind, Brain, and…
			
			
		
	
	 
		
			Jahangir Moini, Anthony Logalbo, …
		
		Paperback
		
		
			
				
				
				
				
				
				R5,218
				
				Discovery Miles 52 180
			
			
		
	 
	
	
	
		
			
				1 Recce: Volume 3 - Onsigbaarheid Is Ons…
			
			
		
	
	 
		
			Alexander Strachan
		
		Paperback
		
		
			
				
				
				
				
				
					 
	
	
	
		
			
				Changing the World - A Framework for the…
			
			
		
	
	 
		
			Mihaly Csikszentmihalyi, David H. Feldman, …
		
		Hardcover
		
		
			
				
				
				
				
				
				R2,039
				
				Discovery Miles 20 390
			
			
		
	 
	
	
	
		
			
				Training, Supervision, and Professional…
			
			
		
	
	 
		
			Helena Maguire, Rita M Gardner, …
		
		Paperback
		
		
			
				
				
				
				
				
				R2,941
				
				Discovery Miles 29 410
			
			
		
	 
 |