Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Optics (light)
This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.
The imaging process in stellar interferometers is explained starting from first principles on wave propagation and diffraction. Wave propagation through turbulence is described in detail using Kolmogorov statistics. The impact of turbulence on the imaging process is discussed both for single telescopes and for interferometers. Correction methods (adaptive optics and fringe tracking) are presented including wavefront sensing/fringe sensing methods and closed loop operation. Instrumental techniques like beam combination and visibility measurements (modulus and phase) as well as Nulling and heterodyne interferometry are described. The book closes with examples of observing programmes linking the theory with individual astrophysical programmes.
The author has shown that practically all our laws, principles, and theories are not physically realizable, since they were derived from an empty space paradigm. From which this book is started with the origin of our temporal (t > 0) universe, it shows that temporal subspace is a physically realizable space within our universe. As in contrasted with generally accepted paradigm where time is an independent variable. From which the author has shown that it is not how rigorous mathematics is, but it is the temporal (t > 0) space paradigm determines the physically realizable solution. Although Einstein's relativity and Schroedinger's principle had revolutionized the modern science, this book has shown that both theory and principle are physically non-realizable since they were developed from an empty space paradigm. One of the most important contribution of this book must be the revolutionary idea of our temporal (t > 0) space, for which the author has shown that absolute certainty exists only at the present (t = 0) moment. Where past-time information has no physical substance and future-time represents a physically realizable yet uncertainty. From which the author has shown that all the existent laws, principles, and theories were based on past-time certainties to predict the future, but science is supposed to be approximated. The author has also shown that this is precisely our theoretical science was developed. But time independent laws and principles are not existed within our temporal universe, in view of the author's temporal exclusive principle. By which the author has noted that timeless science has already created a worldwide conspiracy for examples such as superposition principle, qubit information, relativity theory, wormhole travelling and many others. This book has also shown that Heisenberg's uncertainty is an observational principle independent with time, yet within our universe everything changes with time. In this book the author has also noted that micro space behaviors the same as macro space regardless of the particle size. Finally, one of interesting feature is that, that big bang creation was ignited by a self-induced gravitational force instead by time as commonly believed. Nevertheless, everything has a price to pay; a section of time t and an amount of energy E and it is not free. The author has also shown that time is the only variable that cannot be changed. Although we can squeeze a section of time t as small as we wish but we can never able to squeeze t to zero even we have all the needed energy. Nevertheless, this revolutionary book closer to the truth is highly recommended to every scientist and engineer, otherwise we will forever be trapped within the timeless fantasyland of science. This book is intended for cosmologists, particle physicists, astrophysicists, quantum physicists, computer scientists, optical scientists, communication engineers, professors, and students as a reference or a research-oriented book.
This book traces the evolution of our understanding and utilization of light from classical antiquity and the early thoughts of Pythagoras to the present time. From the earliest recorded theories and experiments to the latest applications in photonic communication and computation, the ways in which light has been put to use are numerous and astounding. Indeed, some of the latest advances in light science are in fields that until recently belonged to the realm of science fiction. The author, writing for an audience of both students and other scientifically interested readers, describes fundamental investigations of the nature of light and ongoing methods to measure its speed as well as the emergence of the wave theory of light and the complementary photon theory. The importance of light in the theory of relativity is discussed as is the development of electrically-driven light sources and lasers. The information here covers the range o f weak single-photon light sources to super-high power lasers and synchrotron light sources. Many cutting-edge topics are also introduced, including entanglement-based quantum communication through optical fibers and free space, quantum teleportation, and quantum computing. The nature and use of "squeezed light" - e.g. for gravitational wave detection - is another fascinating excursion, as is the topic of fabricated metamaterials, as used to create invisibility cloaks. Here the reader also learns about the realization of extremely slow speed and time-reversed light. The theories, experiments, and applications described in this book are, whenever possible, derived from original references. The many annotated drawings and level of detail make clear the goals, procedures, and conclusions of the original investigators. Where they are required, all specialist terms and mathematical symbols are defined and explained. The final part of the book covers light expe riments in the free space of the cosmos, and also speculates about scenarios for the cosmological origins of light and the expected fate of the photon in a dying universe.
This thesis covers a broad range of interdisciplinary topics concerning electromagnetic-acoustic (EM-Acoustic) sensing and imaging, mainly addressing three aspects: fundamental physics, critical biomedical applications, and sensing/imaging system design. From the fundamental physics perspective, it introduces several highly interesting EM-Acoustic sensing and imaging methods, which can potentially provide higher sensitivity, multi-contrast capability, and better imaging performance with less distortion. From the biomedical applications perspective, the thesis introduces useful techniques specifically designed to address selected challenging biomedical applications, delivering rich contrast, higher sensitivity and finer spatial resolution. Both phantom and ex vivo experiments are presented, and in vivo validations are progressing towards real clinical application scenarios. From the sensing and imaging system design perspective, the book proposes several promising sensing/imaging prototypes. Further, it offers concrete suggestions that could bring these systems closer to becoming "real" products and commercialization, such as replacing costly lasers with portable laser diodes, or integrating transmitting and data recording on a single board.
This book details parametric down-conversion for the generation of non-classical state of light and its applications in generating various kinds of quantum entanglement among multiple photons from parametric down-conversion. It presents applications of the principle of quantum interference to multi-photon systems. The book also details continuous variable entanglement and various types of multi-photon interference effects.
Features • Provides a cutting edge review of the latest emerging science, technology and applications in the field. • Tackles a topic with fast growing interest in USA, Europe and China. • Explores the simple and cheap design and tests of lasers, and outline the feasible applications.
Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.
The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.
This book, the first dedicated to the topic, provides a comprehensive treatment of forward stimulated Brillouin scattering (SBS) in standard optical fibers. SBS interactions between guided light and sound waves have drawn much attention for over fifty years, and optical fibers provide an excellent playground for the study of Brillouin scattering as they support guided modes of both wave types and provide long interaction lengths. This book is dedicated to forward SBS processes that are driven by co-propagating optical fields. The physics of forward SBS is explained in detail, starting from the fundamentals of interactions between guided optical and acoustic waves, with emphasis given to the acoustic modes that are stimulated in the processes. The realization of forward SBS in standard single-mode, polarization-maintaining and multi-core fibers is then discussed in depth. Innovative potential applications in sensors, monitoring of coating layers, lasers, and radio-frequency oscillators are presented. This book introduces the subject to graduate students in optics and applied physics, and it will be of interest to scientists working in fiber-optics, nonlinear optics and opto-mechanics. Provides the first treatment of forward stimulated Brillouin scattering (SBS) in book form; Reflects the dramatic recent increase in interest in forward SBS processes , driven in part by the promise of new fiber sensing concepts; Delivers a solid and comprehensive grounding in the physics of forward SBS along with detailed experimental set-ups, measurement protocols, and applications.
Lightscatteringisusedinmanyapplications,rangingfromopticalparticlesizing of powders to interstellar dust studies. At the moment there is no a specialized journal aimed at studies of exclusively light scattering problems. Instead, d- ferent aspects of the problem and also di?erent applications are considered in a varietyof specializedjournalscoveringseveralscienti?cdisciplinessuchasch- istry, physics, biology, medicine, astrophysics, and atmospheric science, to name afew. The Light Scattering Reviews (LSR) series started in 2006 with the aim of facilitating interaction between di?erent groups of scientists working in diverse scienti?c areas but using the same technique, namely light scattering, for so- tion of speci?c scienti?c tasks. This second volume of LSR is devoted mostly to applications of light scattering in atmospheric research. The book consists of eight contributions prepared by internationally recognized authorities in cor- spondent research ?elds. The ?rst paper prepared by Howard Barker deals with the recent devel- ments in solar radiative transfer in the terrestrial atmosphere and global climate modelling. In particular, methods to compute radiative transfer characteristics needed for numerical global climate models are discussed in a great depth. Their de?cienciesareaddressedaswell.Theproblemof3Dradiativetransferincloudy atmospheres, a hot topic in modern climate modelling, is also considered.
Luminescence of Solids gathers together much of the latest work on luminescent inorganic materials and new physical phenomena. The volume includes chapters covering -- the achievements that have led to the establishment of the fundamental laws of luminescence -- light sources, light-dispersing elements, detectors, and other experimental techniques -- models and mechanisms -- materials preparation, and -- future trends. This international collection of cutting-edge luminescence research is complemented by over 170 illustrations that bring to life the text's many vital concepts.
This graduate text gives an introductory overview of the fundamentals of quantum nonlinear optics. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, nonlinear spectroscopy as well as ultrashort and ultrastrong laser pulse. In addition, latest results of the frontier of this science are presented. Problems and solutions help the reader to become familiar with the material given.
Faster than light - Einstein's relativity is on its way down. It's a Newtonian universe once again.
This book covers four major topics of integrated photonics: 1)
fundamental principles of electromagnetic theory; 2) waveguides; 3)
simulation of waveguide modes, and 4) photonic structures. The
first part of the text explores the basis for optical propagation
and establishes the use of the MKS system, discussing the wave
equation and the properties of materials such as attenuation and
dispersion. The next section explores the operation of optical
waveguides. We start with planar slab waveguides, then
systematically advance to more complicated structures, such as
graded index waveguides, circular waveguides, and rectangular
waveguides. The details of coupling light between and within
waveguide modes is clearly described, and applied to the
examination of photonic bandgap crystals and optical devices such
as arrayed waveguides. The final section of the text discusses
optoelectronic devices such as modulators and switches. These
topics are very active areas of research today, and are likely to
increase in significance as they mature.
This book, the first of its kind, bridges the gap between the increasingly interlinked fields of nanophotonics and artificial intelligence (AI). While artificial intelligence techniques, machine learning in particular, have revolutionized many different areas of scientific research, nanophotonics holds a special position as it simultaneously benefits from AI-assisted device design whilst providing novel computing platforms for AI. This book is aimed at both researchers in nanophotonics who want to utilize AI techniques and researchers in the computing community in search of new photonics-based hardware. The book guides the reader through the general concepts and specific topics of relevance from both nanophotonics and AI, including optical antennas, metamaterials, metasurfaces, and other photonic devices on the one hand, and different machine learning paradigms and deep learning algorithms on the other. It goes on to comprehensively survey inverse techniques for device design, AI-enabled applications in nanophotonics, and nanophotonic platforms for AI. This book will be essential reading for graduate students, academic researchers, and industry professionals from either side of this fast-developing, interdisciplinary field. Â
Cathodoluminescence microscopy/spectroscopy is a powerful technique providing detailed information on the shock metamorphism of target rocks, biosignatures of meteorites and mineralogy of the pre-solar grains. Moreover, it can be used as an in-situ method to classify the solid-atmospheric-liquid interactions on the surface of Mars.
This book reproduces the proceedings of the last of a series of "Euroconferences" dedicated to the ongoing near-infrared sky surveys DENIS and 2MASS. It presents the current status of both projects and some of the most outstanding results they have recently achieved in various areas of galactic and extragalactic astronomy. The book contains substantial articles by researchers directly involved in the survey data processing and interpretation which thoroughly describe the astrophysical context in which deep and homogeneous near-infrared surveys will eventually bring about significant breakthrough. They deal with the determination of basic parameters of the galactic structure, the stellar content of the bulge, the construction of unbiased and statistically significant samples of isolated very low mass stars and brown dwarfs, the improvement of the low-end of the stellar luminosity and mass functions, the complete census of young stellar objects in nearby giant molecular clouds, the accurate determination of the luminosity function of late-type giants in the Magellanic Clouds and the structure of the local universe. The analysis of a very small subsample of the full expected set of data promises an extraordinary harvest of discoveries in the 21st century, especially when these data are merged with the results of major related space missions such as Hipparcos and ISO. This book would be of general interest to graduate students in astronomy and professional astronomers involved in most areas of observational astronomy.
Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes-fullerene, nanotubes, graphene, and carbyne-is called "nanostructured carbon" or "nanocarbon." These isotopes exhibit extreme properties such as ultrahigh mechanical strength, ultrahigh charge-carrier mobility, and high thermal conductivity, attracting considerable attention for their electronic and mechanical applications as well as for exploring new physics and chemistry in the field of basic materials science. Electron sources are important in a wide range of areas, from basic physics and scientific instruments to medical and industrial applications. Carbon nanotubes (CNTs) and graphene behave as excellent electron-field emitters owing to their exceptional properties and offer several benefits compared to traditional cathodes. Field emission (FE) produces very intense electron currents from a small surface area with a narrow energy spread, providing a highly coherent electron beam-a combination that not only provides us with the brightest electron sources but also explores a new field of electron beam-related research. This book presents the enthusiastic research and development of CNT-based FE devices and focuses on the fundamental aspects of FE from nanocarbon materials, including CNTs and graphene, and the latest research findings related to it. It discusses applications of FE to X-ray and UV generation and reviews electron sources in vacuum electronic devices and space thrusters. Finally, it reports on the new forms of carbon produced via FE from CNT.
This book is aimed at description of recent progress in studies of multiple and single light scattering in turbid media. Light scattering and radiative transfer research community will greatly benefit from the publication of this book.
Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.
This book is mostly concerned on the experimental research of the
nonlinear optical characteristics of various media, low- and
high-order harmonic generation in different materials, and
formation, and nonlinear optical characterization of clusters. We
also demonstrate the inter-connection between these areas of
nonlinear optics.
This volume contains essays that examine the optical works of Giambattista Della Porta, an Italian natural philosopher during the Scientific Revolution. Coverage also explores the science and technology of early modern optics. Della Porta's groundbreaking book, Magia Naturalis (Natural Magic), includes a prototype of the camera. Yet, because of his obsession with magic, Della Porta's scientific achievements are often forgotten. As the contributors argue, his work inspired such great minds as Johanes Kepler and Francis Bacon. After reading this book, researchers, historians, and students will have a better appreciation of this influential scientist. They will also gain a greater understanding of an important period in the history of optics. Readers will learn about Della Porta's experimental method, a process governed by the protocols, aims, and theoretical assumptions of natural magic. Coverage also discusses the material properties and limitations of optical technology in the early 17th century, based on a recently discovered Dutch spyglass. It also demonstrates how diagrams were instrumental in the discovery of the sine law of refraction. In addition, the book includes an in-depth analysis of previously untranslated Latin sources. This makes the material useful to historians of optics unfamiliar with the language. More than 70 illustrations complement the text.
This book provides a wide scope of contributions related to optoelectronic device application in a variety of robotic systems for diverse purposes. The contributions are focused on optoelectronic sensors and analyzing systems, 3D and 2D machine vision technologies, robot navigation, pose estimations, robot operation in cyclic procedures, control schemes, motion controllers, and intelligent algorithms and vision systems. Applications of these technologies are outlined for unmanned aerial vehicles, autonomous and mobile robots, industrial inspection applications, cultural heritage documentation, and structural health monitoring. Also discussed are recent advanced research in measurement and others areas where 3D and 2D machine vision and machine control play an important role. Surveys and reviews about optoelectronic and vision-based applications are also included. These topics are of interest to readers from a diverse group including those working in optoelectronics, and electrical, electronic and computer engineering.
The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss many exciting new developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Willis Lamb, Jr., Profs. H. Walther, A.E. Siegman and M.O. Scully. In addition, there were 34 invited lectures, 27 contributed oral presentations, and 59 poster papers. This volume contains many of the papers presented at the conference. |
You may like...
Ophthalmic Lenses and Accessories…
Bausch & Lomb Optical Company
Hardcover
R792
Discovery Miles 7 920
Analytical Lens Design, Second Edition
Rafael G. Gonzalez-Acuna
Hardcover
R3,230
Discovery Miles 32 300
Roentgen Rays - Memoirs by Roentgen…
Wilhelm Conrad 1845-1923 Roentgen
Hardcover
R755
Discovery Miles 7 550
Bioluminescence - Technology and Biology
Hirobumi Suzuki, Katsunori Ogoh
Hardcover
|