![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
This book by one of the leaders in adaptive optics covers the fundamental theory and then describes in detail how this technology can be applied to large ground-based telescopes to compensate for the effects of atmospheric turbulence. It includes information on basic adaptive optics components and technology, and has chapters devoted to atmospheric turbulence, optical image structure, laser beacons, and overall system design. The chapter on system design is particularly detailed and includes performance estimation and optimization. Combining a clear discussion of physical principles with numerous real-world examples, this book will be a valuable resource for all graduate students and researchers in astronomy and optics.
Janus, the ancient Roman god depicted with two faces is an appropriate metaphor for light therapy. In the right photodynamic therapy conditions, light is able to kill nearly anything that is living such as cancers, microorganisms, parasites, and more. On the opposite face, light of the correct wavelength and proper dose (photobiomodulation) can heal, regenerate, protect, revitalize and restore any kind of dead, damaged, stressed, dying, degenerating cells, tissue, or organ system. This book discusses both sides of Janus' face in regards to light therapy.
"Offers and up-to-date assessment of the entire field of diffraction gratings, including history, physics, manufacture, testing, and instrument design. Furnishes--for the first time in a single-source reference--a thorough review of efficiency behavior, examining echelles as well as concave, binary, transmission, fiber, and waveguide gratings."
This book is aimed at description of recent progress in studies of multiple and single light scattering in turbid media. Light scattering and radiative transfer research community will greatly benefit from the publication of this book.
This dissertation covers several important aspects of relativistically intense laser-microplasma interactions and some potential applications. A Paul-trap based target system was developed to provide fully isolated, well defined and well positioned micro-sphere-targets for experiments with focused peta-watt laser pulses. The laser interaction turned such targets into microplasmas, emitting proton beams with kinetic energies exceeding 10 MeV. The proton beam kinetic energy spectrum and spatial distribution were tuned by variation of the acceleration mechanism, reaching from broadly distributed spectra in relatively cold plasma expansions to spectra with relative energy spread as small as 20% in spherical multi-species Coulomb explosions and in directed acceleration processes. Numerical simulations and analytical calculations support these experimental findings and show how microplasmas may be used to engineer laser-driven proton sources. In a second effort, tungsten micro-needle-targets were used at a peta-watt laser to produce few-keV x-rays and 10-MeV-level proton beams simultaneously, both measured to have only few-m effective source-size. This source was used to demonstrate single-shot simultaneous radiographic imaging with x-rays and protons of biological and technological samples. Finally, the dissertation discusses future perspectives and directions for laser-microplasma interactions including non-spherical target shapes, as well as thoughts on experimental techniques and advanced quantitative image evaluation for the laser driven radiography.
Nonlinear Optics of Organic Molecules and Polymers presents theoretical approaches, measurement techniques, materials, technologies, and applications of modern nonlinear optical (NLO) materials. It provides an excellent overview of the exciting new advances in NLO materials and their applications in emerging photonics technologies. Features: provides complete coverage of the field - from basic optical physics to advanced theoretical modeling and molecular engineering; summarizes all NLO materials published through 1995, including second- and third-order NLO materials, and electro-optic, photorefractive, and optical limiting materials; discusses photonics technologies and applications of all NLO materials; includes 320 figures, 225 tables, 1150 chemical structures, 850 equations, and more than 2,000 citations.
This book addresses the theoretical foundations and the main physical consequences of electromagnetic interaction, generally considered to be one of the four fundamental interactions in nature, in a mathematically rigorous yet straightforward way. The major focus is on the unifying features shared by classical electrodynamics and all other fundamental relativistic classical field theories. The book presents a balanced blend of derivations of phenomenological predictions from first principles on the one hand, and concrete applications on the other. Further, it highlights the internal inconsistencies of classical electrodynamics, and addresses and resolves often-ignored critical issues, such as the dynamics of massless charged particles, the infinite energy of the electromagnetic field, and the limits of the Green's function method. Presenting a rich, multilayered, and critical exposition on the electromagnetic paradigm underlying the whole Universe, the book offers a valuable resource for researchers and graduate students in theoretical physics alike.
Intended for students in the visual arts and for others with an interest in art, but with no prior knowledge of physics, this book presents the science behind what and how we see. The approach emphasises phenomena rather than mathematical theories and the joy of discovery rather than the drudgery of derivations. The text includes numerous problems, and suggestions for simple experiments, and also considers such questions as why the sky is blue, how mirrors and prisms affect the colour of light, how compact disks work, and what visual illusions can tell us about the nature of perception. It goes on to discuss such topics as the optics of the eye and camera, the different sources of light, photography and holography, colour in printing and painting, as well as computer imaging and processing.
Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.
This book provides a wide scope of contributions related to optoelectronic device application in a variety of robotic systems for diverse purposes. The contributions are focused on optoelectronic sensors and analyzing systems, 3D and 2D machine vision technologies, robot navigation, pose estimations, robot operation in cyclic procedures, control schemes, motion controllers, and intelligent algorithms and vision systems. Applications of these technologies are outlined for unmanned aerial vehicles, autonomous and mobile robots, industrial inspection applications, cultural heritage documentation, and structural health monitoring. Also discussed are recent advanced research in measurement and others areas where 3D and 2D machine vision and machine control play an important role. Surveys and reviews about optoelectronic and vision-based applications are also included. These topics are of interest to readers from a diverse group including those working in optoelectronics, and electrical, electronic and computer engineering.
Technological advances in semiconductor growth has opened a broad horizon for semiconductor physics and applications during the past 20 years. High quality two-. dimensional systems are achieved with nearly atomic precision by direct epitaxial growth. Such structures led to novel applications like low noise high frequency modulation doped field effect transistors and quantum well lasers. Semiconductor heterostructures of lower dimensionality like quantum wires and quantum dots are not yet as mature, partly due to the lack in precision oflateral structuring technology. In recent years, however, there was an enormous progress in novel epitaxial growth methods. This opens a wide new area of basic and applied semiconductor physics with the hope of novel applications in near future making use of the advantageous properties of one- and zero-dimensional systems. Ideas for future device applications mainly stem from the altered density of states being discrete or atomic-like for quantum dots. Optical spectroscopy has played and is playing a crucial role in the advancement of this fascinating field of semiconductor physics. The NATO school organized at Bilkent University in Ankara and in Antalya brought together experts in this field and newcomers, especially young Ph. D. students and postdocs, to learn about recent developments and to discuss open questions in the area of optical spectroscopy of low dimensional semiconductors. The school turned out to be extremely fruitful and there was a great enthusiasm among the lecturers and students during the whole two weeks.
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: thorpe @ pa.msu.edu East Lansing, Michigan PREFACE One of the most challenging problems in the study of structure is to characterize the atomic short-range order in materials. Long-range order can be determined with a high degree of accuracy by analyzing Bragg peak positions and intensities in data from single crystals or powders. However, information about short-range order is contained in the diffuse scattering intensity. This is difficult to analyze because it is low in absolute intensity (though the integrated intensity may be significant) and widely spread in reciprocal space."
This book introduces the basic concept of a dissipative soliton, before going to explore recent theoretical and experimental results for various classes of dissipative optical solitons, high-energy dissipative solitons and their applications, and mode-locked fiber lasers. A soliton is a concept which describes various physical phenomena ranging from solitary waves forming on water to ultrashort optical pulses propagating in an optical fiber. While solitons are usually attributed to integrability, in recent years the notion of a soliton has been extended to various systems which are not necessarily integrable. Until now, the main emphasis has been given to well-known conservative soliton systems, but new avenues of inquiry were opened when physicists realized that solitary waves did indeed exist in a wide range of non-integrable and non-conservative systems leading to the concept of so-called dissipative optical solitons. Dissipative optical solitons have many unique properties which differ from those of their conservative counterparts. For example, except for very few cases, they form zero-parameter families and their properties are completely determined by the external parameters of the optical system. They can exist indefinitely in time, as long as these parameters stay constant. These features of dissipative solitons are highly desirable for several applications, such as in-line regeneration of optical data streams and generation of stable trains of laser pulses by mode-locked cavities.
Describes the optical structure and optical properties of the human eye Explains image formation and refraction of the eye Covers interactions between light and the eye, considering transmission, reflection and scatter in the media of the eye and at the fundus Covers aberrations and image quality of the eye
Over 100 scientists met at the IBM Research Laboratory in San Jose. California for a symposium on the Physics and Chemistry of Liquid Crystal Devices. The two-day meeting was intellectually stimulating with excellent oral presentations and with person-to-person discussions. The applications of liquid crystals have developed dramatically in the past ten years. In these few years, they have moved from being a laboratory curiosity to products in the market place. The first commercial application (1940's) of liquid crystals was the preparation of a light polarizer. The second commercial application was their use as temperature sensors. The third major application of liquid crystals dealt with commercial displays. Other current applications include polymeric and graphitic fibers and light attenuators. The future of liquid crystals looks very promising indeed. One can expect to see new fibers of qualities which will be superior to those presently known. Graphitic fibers or other physical forms of graphitic materials will be used as catalytic surfaces for chemical synthesis. In the display area. one can expect to see television screens using liquid crystals. Larger displays than are now used in wrist watches and pocket calculators will become available. Liquid crystals using color displays will become commercially practical. Watches. calculators and television screens will have color.
Since 1968, the International Acoustical Imaging Symposium has provided a unique forum for advanced research, promoting the sharing of technology, developments, methods and theory among all areas of acoustics. Volume 28 of the Proceedings offers an excellent collection of papers presented in six major categories, offering both a broad perspective on the state of the art in the field as well as an in-depth look at its leading edge research.
This book presents the history of the development of fibre optic technology, explaining the scientific challenges that needed to be overcome, the range of applications and future potential for this fundamental communications technology. The author has followed and reported the development closely for the past 20 years, and is better placed than anyone to write the definitive history of the field.
This thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.
This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.
Nanospectroscopy addresses the spectroscopy of very small objects down to single molecules or atoms, or high-resolution spectroscopy performed on regions much smaller than the wavelength of light, revealing their local optical, electronic and chemical properties. This work highlights modern examples where optical nanospectroscopy is exploited in photonics, optical sensing, medicine, or state-of-the-art applications in material, chemical and biological sciences. Examples include the use of nanospectroscopy in such varied fields as quantum emitters, dyes and two-dimensional materials, on solar cells, radiation imaging detectors, biosensors and sensors for explosives, in biomolecular and cancer detection, food science, and cultural heritage studies.
This monograph is concerned with the III-V bulk and low-dimensional semiconductors, with the emphasis on the implications of multi-valley bandstructures for the physical mechanisms essential for opto-electronic devices. The optical response of such semiconductor materials is determined by many-body effects such as screening, gap narrowing, Fermi-edge singularity, electron-hole plasma and liquid formation. Consequently, the discussion of these features reflects such interdependencies with the dynamics of excitons and carriers resulting from intervalley coupling.
Statistical Methods in Quantum Optics 2 - Non-Classical Fields continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in the first volume Statistical Methods in Quantum Optics 1 - Matter Equations and Fokker-Planck Equations the difficulties these methods face in treating non-classical light are exposed, where the regime of large fluctuations failure of the system size expansion is shown to be particularly problematic. Cavity QED is adopted as a natural vehicle for extending quantum noise theory into this regime. In response to the issues raised, the theory of quantum trajectories is presented as a universal approach to the treatment of fluctuations in open quantum systems. This book presents its material at a level suitable for beginning researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems. The text is complemented by exercises and interspersed notes that point the reader to side issues or a deeper exploration of the material presented."
Nonlinearities and optics, optoelectronics and fiber communications are discussed systematically in this book. In a unified theoretical treatment, the book addresses the three categories of materials: fibers, semiconductors, and nonlinear crystals. In each case emphasis is placed on the nonlinear character of their refractive indices and optical absorption. The text also gives an in-depth analysis of the uses and limitations of phontonic nonlinearities with regard to wavelength division multiplexing and high-speed fiber communications. It will be of interest to graduate students as well as researchers and engineers in the fields of nonlinear optics and optical communications.
Outstanding progress in near-infrared detection technology and in real-time image processing has led astronomers to start undertaking all-sky surveys in the 1--2 mum range (project DENIS in Europe and 2MASS in the U.S.A.), surveys which will have a considerable impact in various areas of astronomy. This book gathers the contributions of more than 80 specialists involved in fields of interest as different as low mass stars, late stages of stellar evolution, star formation, stellar populations of the Galaxy and the Magellanic Clouds, the local structure of the Universe, and observational cosmology. It describes the impact on these fields of the exhaustive data bases and catalogs of stars and galaxies that these surveys will provide. The considerable interest of these documents for the future of infrared space and ground-based projects and the complementarity with other currently ongoing or planned surveys in other spectral ranges are emphasized.
This is the first book on lock-in thermography, an analytical method applied to the diagnosis of microelectronic devices. This useful introduction and guide reviews various experimental approaches to lock-in thermography, with special emphasis on the lock-in IR thermography developed by the authors themselves. |
You may like...
Solid State Physics, Volume 73
Robert L Stamps, Robert E Camley, …
Hardcover
R5,859
Discovery Miles 58 590
Resonant Tunneling Diode Photonics…
Charlie Ironside, Bruno Romeira, …
Paperback
R752
Discovery Miles 7 520
|