![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
This volume collects a a number of contributions on spontaneous
symmetry breaking. Current studies in this general field are going
ahead at a full speed. The book present review chapters which give
an overview on the major break throughs of recent years. It covers
a number of different physical settings which are introduced when a
nonlinearity is added to the underlying symmetric problems and its
strength exceeds a certain critical value. The corresponding loss
of symmetry, called spontaneous symmetry breaking, alias
self-trapping into asymmetric states is extensively discussed in
this book.
This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light-matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light-matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.
This book highlights the new technologies and applications presented at the 2021 International Conference on Precision Instruments and Optical Engineering held in Chengdu, China from 25 to 27 August 2021. The conference aimed to provide a platform for researchers and professionals to share research findings, discuss cutting-edge technologies, promote collaborations and fuel the industrial transition of new technologies. The invited and contributed papers covered recent developments in optoelectronic devices, nanophotonic research, optoelectronic materials, precision instruments, intelligent instruments, laser technology, optical spectroscopy and other optical engineering topics. The book is intended for researchers, engineers and advanced students interested in precision instruments and optical engineering and their applications in diverse fields.
This book highlights the synthesis/fabrication of novel materials for different kinds of optical applications. It covers all aspects of optical applications starting from LED/Lasers, SERS, bio-sensing, bio-imaging and non-linear optical applications such as optical limiting, saturable absorbers etc. The book describes the development of novel materials and geometry as well as engineering of their size and shape for harvesting better optical properties. Nonconventional plasmonic materials and their fabrication are discussed apart from the conventionally employed noble metal based nanosystems. In addition, development of Novel materials/structures for biosensing /bioimaging /optical limiting are also covered.
An intuitive and accessible approach to the fundamentals of physical optics In the newly revised Second Edition of Principles of Physical Optics, eminent researcher Dr. Charles A. Bennet delivers an intuitive and practical text designed for a one-semester, introductory course in optics. The book helps readers build a firm foundation in physical optics and gain valuable, practical experience with a range of mathematical applications, including matrix methods, Fourier analysis, and complex algebra. This latest edition is thoroughly updated and offers 20% more worked examples and 50% more homework problems than the First Edition. Only knowledge of standard introductory sequences in calculus and calculus-based physics is assumed, with the included mathematics limited to what is necessary to adequately address the subject matter. The book provides additional materials on optical imaging and nonlinear optics and dispersion for use in an accelerated course. It also offers: A thorough introduction to the physics of waves, including the one-dimensional wave equation and transverse traveling waves on a string Comprehensive explorations of electromagnetic waves and photons, including introductory material on electromagnetism and electromagnetic wave equations Practical discussions of reflection and refraction, including Maxwell's equations at an interface and the Fresnel equations In-depth examinations of geometric optics, as well as superposition, interference, and diffraction Perfect for advanced undergraduate students of physics, chemistry, and materials science, Principles of Physical Optics also belongs on the bookshelves of engineering students seeking a one-stop introduction to physical optics.
Remarkable recent progress in quantum optics has given rise to extremely precise quantum measurements that are used in the research into the fundamentals of quantum physics, and in different branches of physics such as optical spectroscopy. This progress stimulates new technologies in the field of optical communications, optical computation and information systems. This state-of-the-art volume presents work from a Summer School on Advances in Quantum Optics and Spectroscopy of Solids, held in Ankara, Turkey, in 1995. The various contributions written by leading scientists in the field cover a wide range of subjects in this exciting area of physics, and report new and important results and ideas. Topics dealt with include the interaction of quantum light with trapped atoms and condensed matter; quantum tomography and phase analysis; and many applications of quantum optics from mesoscopic physics to correlation spectroscopy of non-classical states, which are of major importance in understanding the nature of collective excitations in solids. Audience: This book will be of interest to postgraduate students and researchers whose work involves quantum optics, solid state spectroscopy and its applications.
This book contains the latest scientific findings in the area of granular materials, their physical fundamentals and applications in particle technology focused on the description of interactions of fine adhesive particles.In collaboration between physicists, chemists, mathematicians and mechanics and process engineers from 24 universities, new theories and methods for multiscale modeling and reliable measurement of particles are developed, with a focus on:* Basic physical-chemical processes in the contact zone: particle-particle and particle-wall contacts,* Particle collisions and their dynamics* Constitutive material laws for particle systems on the macro level.
The book presents solutions to a complex of internal and external problems of electromagnetics associated with the development of theory, construction of mathematical models and the development of rigorous methods for calculating the electrodynamic characteristics of combined vibrator-slot structures. The solutions of problems for determining the characteristics of impedance vibrator and slot radiators with arbitrary geometric and electrophysical parameters presented in the monograph were obtained within the framework of the unified methodological approach to construct asymptotic solutions of integral equations on currents and their systems. This approach made it possible to study a number of new combined vibrator-slot structures. The research results reveal the possibilities of using such structures as basic elements in the creation of modern antenna-waveguide devices operating in the ranges from meter to millimeter wavelengths, with new technical characteristics and functional purpose. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna-feeder design. The book covers the following topics: * excitation of electromagnetic waves in volumes with coordinate boundaries;* general issues of the theory of thin impedance vibrators and narrow slots in a spatial-frequency representation;* solution of current equations for isolated vibrator and slot scatterers;* combined radiating vibrator-slot structures in rectangular waveguide;* T-junctions of rectangular waveguides with vibrator-slot structures in coupling areas;* waveguide radiation of the combined vibrator-slot structures;* combined vibrator-slot structures located on a perfectly conducting sphere;* combined vibrator-slot Radiators in antenna arrays;* ultrawideband vibrator-slot structures;
This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. This expanded and updated new edition includes substantial new material on nonlinear frequency conversion and Raman fiber lasers and amplifiers, as well as an expanded list of references inclusive of the recent literature in the field. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn the basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, the main operational laser regimes, and will receive practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professional physicists and engineers who work with lasers in the optical and telecommunications field, as well as those in the chemical and biological industries.
The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take part in the meeting.
A systematic account of the current status of holographic recognition systems, including their theory, principles of construction, and applications. Discusses statistical image recognition methods, optical data processing, principles of holographic correlator construction, holographic character read
Rapid development of microfabrication and assembly of
nanostructures has opened up many opportunities to miniaturize
structures that confine light, producing unusual and extremely
interesting optical properties. Microcavities addresses the large
variety of optical phenomena taking place in confined solid state
structures: microcavities. Realisations include planar and pillar
microcavities, whispering gallery modes, and photonic crystals. The
microcavities represent a unique laboratory for quantum optics and
photonics. They exhibit a number of beautiful effects including
lasing, superfluidity, superradiance, entanglement etc.
Light Scattering Reviews (vol.7) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, fast radiative transfer techniques, use of polarization in remote sensing, Markovian approach for radiative transfer in cloudy atmospheres, coherent and incoherent backscattering by turbid media and surfaces, advances in radiative transfer methods as used for luminiscence tomography, optical properties of aerosol, ice crystals, snow, and oceanic water. This volume will be a valuable addition to already published volumes 1-6 of Light Scattering Reviews
This book highlights the use of LEDs in biomedical photoacoustic imaging. In chapters written by key opinion leaders in the field, it covers a broad range of topics, including fundamentals, principles, instrumentation, image reconstruction and data/image processing methods, preclinical and clinical applications of LED-based photoacoustic imaging. Apart from preclinical imaging studies and early clinical pilot studies using LED-based photoacoustics, the book includes a chapter exploring the opportunities and challenges of clinical translation from an industry perspective. Given its scope, the book will appeal to scientists and engineers in academia and industry, as well as medical experts interested in the clinical applications of photoacoustic imaging.
This book offers an introduction to the booming field of high-power laser-matter interaction. It covers the heating of matter to super-high temperatures and pressures, novel schemes of fast particle acceleration, matter far from thermal equilibrium, stimulated radiation scattering, relativistic optics, strong field QED, as well as relevant applications, such as extreme states of matter, controlled fusion, and novel radiation sources. All models and methods considered are introduced as they arise and illustrated by relevant examples. Each chapter contains a selection of problems to test the reader's understanding, to apply the models under discussion to relevant situations and to discover their limits of validity. The carefully chosen illustrations greatly facilitate the visualization of physical processes as well as presenting detailed numerical results. A list of useful formulas and tables are provided as a guide to quantifying results from experiments and numerical simulations. Each chapter ends with a description of the state of the art and the current research frontiers.
Features • Discusses novel methods of cancer diagnostics and cancer treatment. • Details non and minimally-invasive photonics techniques. • Explores the applications of machine learning and artificial intelligence to these novel techniques.
A thorough introduction to modern classical and quantum optics,
appropriate for advanced undergraduates or beginning graduates. The
emphasis is on building an understanding in straightforward steps.
Digital cameras, LCD screens, laser welding, and the optical
fibre-based internet illustrate the penetration of optics in
twenty-first century life: many such modern applications are
presented from first principles.
This book has been written as part of a new series of scientific text-books being published by Plenum Publishing Company Limited. The scope of the series is to review a chosen topic in each volume, and in addition, to present abstracts of the most important references cited in the text. Thus allowing the reader to supplement the information contained within this book without have to refer to many additional publications. This volume is devoted to the subject of Radiation Detectors, known as Photodetectors, and particular emphasis has been placed on devices operating in the infrared region of the electromagnetic spectrum. Although some detectors which are sensitive at ultraviolet and visible wavelengths, are also described. The existence of the infrared region of the spectrum has been known for almost two hundred years but the development of detectors specifically for these wavelengths was limited for a long time due to technology limitations and difficulties in understanding and explaining the phenomena involved. Significant advances were made during World War II, when the potential military applications of being able "to see in the dar ' were demonstrated, and this progress has been maintained during the last forty years when many major advances have been achieved, such that the use of photodetectors for both civil and military applications is now relatively common and can be inexpensive.
This book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors' own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
This book covers all main aspects of guidance information processing technologies for airborne optical imaging seekers, including theoretical models; image pre-processing; automatic target detection, recognition and tracking; and embedded real-time processing systems. The book is divided into three major sections: firstly, a theoretical model for optical-seeker information processing is introduced; then information processing methods are presented, including target modeling, online image pre-processing, typical surface fixed-target detection and recognition, and moving-target detection and recognition; lastly, embedded real-time processing systems are introduced, including new system architectures, image processing ASIC/SoC design, embedded real-time operating systems, system implementation aspects, and system testing and evaluation technologies. The book offers a unique and valuable resource, helping readers understand both fundamental and advanced information processing technologies employed in airborne optical imaging seekers.
In Laser Physics the interaction of radiation and matter, and the
principles of laser operation are treated at a level suitable for
fourth-year undergraduate courses or introductory graduate courses
in physics, chemistry or engineering. The factors which determine
efficiency, wavelength coverage, output power, and beam quality of
the different classes of laser are treated both in terms of
fundamental theory and practical construction aspects. Details of
established types of solid-state, semiconductor, and gas lasers are
examined together with the techniques that enable their output to
be converted widely across the spectrum. The latest advances in
high power fibre lasers, femtosecond lasers, and X-ray lasers are
explained. The text is liberally illustrated with more than 300
diagrams. An extensive bibliography is provided, together with
numerical problems in each chapter. Solutions are available via the
web.
The second edition of this successful textbook provides an
up-to-date account of the optical physics of solid state materials.
The basic principles of absorption, reflection, luminescence, and
light scattering are covered for a wide range of materials,
including insulators, semiconductors and metals. The text starts
with a review of classical optics, and then moves on to the
treatment of optical transition rates by quantum theory. In
addition to the traditional discussion of crystalline materials,
glasses and molecular solids are also covered.
Bidirectional transmission over optical fibre networks may yield a large cost reduction because of the reduction of the network infrastructure by a factor two and the potential cost reduction by an integrated transceiver design. It may also provide a cost-effective way to upgrade distribution networks by adding bidirectional channels. This book is the first to provide a comprehensive overview of bidirectional transmission in optical networks. It handles physical aspects: the behaviour of the fibre itself in bidirectional transmission transmission aspects: the behaviour and design of bidirectional systems and network aspects: the influence of bidirectional transmission on network design. GBP/LISTGBP Practical guidelines are also given for bidirectional system design. Audience:This book is aimed at designers, builders and operators of optical networks, e.g. the manufacturers of optical transmission systems, public-network operators, developers of local-area networks, cable-television operators, etcetera. The intended level of readership is graduate level in physics or electrical engineering.
Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10 DEGREES16 W/cm are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrodinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrodinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenomena, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way the theoretical background for state of the art experiments with strong and short laser pulses is given. The text is augmented by more than thirty exercises, whose worked-out solutions are given in the last chapter. Some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature." |
You may like...
|