![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Optics (light)
This book maximizes reader insights into the field of mathematical models and methods for the processing of two-dimensional remote sensing images. It presents a broad analysis of the field, encompassing passive and active sensors, hyperspectral images, synthetic aperture radar (SAR), interferometric SAR, and polarimetric SAR data. At the same time, it addresses highly topical subjects involving remote sensing data types (e.g., very high-resolution images, multiangular or multiresolution data, and satellite image time series) and analysis methodologies (e.g., probabilistic graphical models, hierarchical image representations, kernel machines, data fusion, and compressive sensing) that currently have primary importance in the field of mathematical modelling for remote sensing and image processing. Each chapter focuses on a particular type of remote sensing data and/or on a specific methodological area, presenting both a thorough analysis of the previous literature and a methodological and experimental discussion of at least two advanced mathematical methods for information extraction from remote sensing data. This organization ensures that both tutorial information and advanced subjects are covered. With each chapter being written by research scientists from (at least) two different institutions, it offers multiple professional experiences and perspectives on each subject. The book also provides expert analysis and commentary from leading remote sensing and image processing researchers, many of whom serve on the editorial boards of prestigious international journals in these fields, and are actively involved in international scientific societies. Providing the reader with a comprehensive picture of the overall advances and the current cutting-edge developments in the field of mathematical models for remote sensing image analysis, this book is ideal as both a reference resource and a textbook for graduate and doctoral students as well as for remote sensing scientists and practitioners.
This volume contains the papers presented at the NATO Advanced Research Workshop on Localization and Propagation o Classical Waves in Random and Periodic Media held in Aghia Pelaghia, Heraklion, Crete, May 26- 30, 1992. The workshop's goal was to bring together theorists and experimentalists from two related areas, localization and photonic band gaps, to highlight their common interests. The objectives of the workshop were (i) to assess the state of-the-art in experimental and theoretical studies of structures exhibiting classical wave band gaps and/or localization, (ii) to discuss how such structures can be fabricated to improve technologies in different areas of physics and engineering, and (iii) to identify problems and set goals for further research. Studies of the propagation of electromagnetic (EM) waves in periodic and/or disordered dielectric structures (photonic band gap structures) have been and continue to be a dynamic area of research. Anderson localization of EM waves in disordered dielectric structures is of fundamental interest where the strong ei-ei interaction efFects entering the eIectron-localization are absent."
One of the most profound revolutions brought about by quantum mechanics is that it does away with the distinction between waves and particles: atoms, in particular, can exhibit all the properties that we associate with wave phenomena, such as diffraction and interference; it has recently even become possible to prepare collections of atoms in coherent states, like those of photons in a laser beam. These developments are at the core of the rapidly expanding field of atom optics. ||Atom Optics gradually leads the reader from elementary concepts to the frontiers of the field. It is organized in three parts, linear, nonlinear, and quantum atom optics. After a review of light forces on atoms and of laser cooling, the first part discusses the application of light forces to atom optical elements such as gratings, mirrors and lenses, matter-wave diffraction, and atomic traps and resonators. The discussion of nonlinear atom optics starts with a review of collisions from a viewpoint that clearly demonstrates its profound analogy with nonlinear optics. The last part, quantum atom optics, first recalls key results of many-body theory in a formulation geared specifically toward atom optics. This is followed by a discussion of atomic Bose-Einstein condensation and "atom lasers." The final chapters treat such applications as atomic solitons, four-wave mixing, superradiance, and conclude with the coherent amplification of matter waves. ||An online web component to the book, a gateway to atom optics, contains links to the leading references and journals in the field, to research sites, and to updates for the contents of the book. FROM THE REVIEWS: ¿Atom optics today has reached maturity: It has become both wave (coherent) and nonlinear atom optics. Of course that expansion required generalization in a new book. Pierre Meystre has taken just such a generalist approach in his timely ATOM OPTICS. His were the pioneering works in atom optics; to get information from the first explorer is always most valuable to the reader ¿ Recommend[ed] to all strata of the physics community.¿ ¿PHYSICS TODAY
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
Scientific advances and several technical breakthroughs have led to a remarkable increase in available laser intensities over the past decades. In available ultra-intense laser fields, photon fluxes may become so high that free charge carriers interact coherently with several of the field's photons. In this thesis such nonlinear interactions are investigated for the prime example of radiation emission by electrons scattered from intense laser pulses of arbitrary temporal structure. To this end, nonlinear quantum field theory is employed taking the interaction with the laser into account exactly. After an in-depth introduction to classical particle dynamics as well as quantum field theory in nonlinearly intense laser fields the emission of one and two photons is explicitly analyzed. The results are then translated to viable technical applications, such as a scheme for the determination of the carrier-envelope phase of ultra-intense laser pulses and a proposal for detecting the strongly suppressed two-photon signal.
Liquid Crystal Display Drivers deals with Liquid Crystal Displays from the electronic engineering point of view and is the first expressively focused on their driving circuits. After introducing the physical-chemical properties of the LC substances, their evolution and application to LCDs, the book converges to the examination and in-depth explanation of those reliable techniques, architectures, and design solutions amenable to efficiently design drivers for passive-matrix and active-matrix LCDs, both for small size and large size panels. Practical approaches regularly adopted for mass production but also emerging ones are discussed. The topics treated have in many cases general validity and found application also in alternative display technologies (OLEDs, Electrophoretic Displays, etc.).
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular, and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems. Topics covered also include related applied areas,
such as atmospheric science, astrophysics, surface physics, and
laser physics.
Thermoluminescence (TL) is a well-established technique widely used in do- metric and dating applications. Although several excellent reference books exist which document both the t- oretical and experimental aspects of TL, there is a general lack of books that deal withspeci?cnumericalandpracticalaspectsofanalyzingTLdata. Manytimesthe practicaldetailsofanalyzingnumericalTLglowcurvesandofapplyingtheoretical models are dif?cult to ?nd in the published literature. The purpose of this book is to provide a practical guide for both established researchers and for new graduate students entering the ?eld of TL and is intended to be used in conjunction with and as a practical supplement of standard textbooks in the ?eld. Chapter1laysthemathematicalgroundworkforsubsequentchaptersbyprese- ingthefundamentalmathematicalexpressionsmostcommonlyusedforanalyzing experimental TL data. Chapter2presentscomprehensiveexamplesofTLdataanalysisforglowcurves following ?rst-, second-, and general-order kinetics. Detailed analysis of num- ical data is presented by using a variety of methods found in the TL literature, with particular emphasis in the practical aspects and pitfalls that researchers may encounter. Special emphasis is placed on the need to use several different me- ods to analyze the same TL data, as well as on the necessity to analyze glow curves obtained under different experimental conditions. Unfortunately, the lit- ature contains many published papers that claim a speci?c kinetic order for a TL peak in a dosimetric material, based only on a peak shape analysis. It is hoped that the detailed examples provided in Chapter 2 will encourage more comprehensive studies of TL properties of materials, based on the simultaneous use of several different methods of analysis.
This is a story about sand and how science and silicon changed our lives. Over the last century, science taught us how to take this most common material and create the products on which we depend. It allows us to determine the atomic structure of materials and to grow novel, new materials atomic layer by atomic layer. The principles of thermodynamics are used to transform sand into ultra pure silicon. Quantum mechanics gave birth to the electronic age and the computer chip in which dopants are precisely placed in ultra pure silicon. The absorption and emission and reflection of quanta of light, photons, underlies solar cells, light emitting diodes, radiation detectors and optical fibers. This book follows the history of these scientific discoveries and relates them to the products made from sand.
The ?eld that encompasses the term "quantum interference" combines a number of separate concepts, and has a variety of manifestations in d- ferent areas of physics. In the sense considered here, quantum interference is concerned with coherence and correlation phenomena in radiation ?elds and between their sources. It is intimately connected with the phenomenon of non-separability (or entanglement) in quantum mechanics. On account of this, it is obvious that quantum interference may be regarded as a com- nent of quantum information theory, which investigates the ability of the electromagnetic ?eld to transfer information between correlated (entangled) systems. Since it is important to transfer information with the minimum of corruption, the theory of quantum interference is naturally related to the theory of quantum ?uctuations and decoherence. Since the early days of quantum mechanics, interference has been - scribed as the real quantum mystery. Feynman, in his famous introduction to the lectures on the single particle superposition principle, referred in the following way to the phenomenon of interference: "it has in it the heart of quantum mechanics," and it is really 'the only mystery' of quantum mech- ics. With the development of experimental techniques, it has been possible to carry out many of the early Gedanken experiments that played an important role in developing our understanding of the fundamentals of quantum int- ference and entanglement. Despite its long history, quantum interference still challenges our understanding, and continues to excite our imagination.
This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a "fingerprint" for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Foerster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.
In the tradition of its predecessors, this volume comprises a
selection of the best papers presented at the Ninth International
Symposium on Applications of Laser Techniques to Fluid Mechanics,
held in Lisbon in July 2000.
Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics, limnology, atmospheric optics, and remote sensing of ocean and global climate change.
Systems driven far from thermodynamic equilibrium can create dissipative structures through the spontaneous breaking of symmetries. A particularlyfascinating feature of these pattern-forming systems is their tendency toproduce spatially confined states. These localized wave packets can exist as propagating entities through space and/or time. Various examples of suchsystems will be dealt with in this book, including localized states in fluids, chemical reactions on surfaces, neural networks, optical systems, granular systems, population models, and Bose-Einstein condensates. This book should appeal to all physicists, mathematicians and electrical engineers interested in localization in far-from-equilibrium systems. The authors - all recognized experts in their fields -strive to achieve a balance between theoretical and experimental considerations thereby givingan overview offascinating physical principles, their manifestations in diverse systems, and the noveltechnical applications on the horizon.
This book presents for the first time the theory of the moire phenomenon between aperiodic or random layers. The book provides a full general purpose and application-independent exposition of the subject. Throughout the whole text the book favours a pictorial, intuitive approach which is supported by mathematics, and the discussion is accompanied by a large number of figures and illustrative examples."
This volume contains the index for volumes 1-38 in the Advances in Atomic, Molecular, and Optical Physics series.
In the thirty-seven years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. At the time of inception of this
series, the first lasers were only just becoming operational,
holography was in its infancy, subjects such as fiber optics,
integrated optics and optoelectronics did not exist and quantum
optics was the domain of only a few physicists. The term photonics
had not yet been coined. Today these fields are flourishing and
have become areas of specialisation for many science and
engineering students and numerous research workers and engineers
throughout the world. Some of the advances in these fields have
been recognized by awarding Nobel prizes to seven physicists in the
last twenty years. The volumes in this series which have appeared
up to now contain nearly 190 review articles by distinguished
research workers, which have become permanent records for many
important developments. They have helped optical scientists and
optical engineers to stay abreast of their fields. There is no sign
that developments in optics are slowing down or becoming less
interesting.
Electromagnetic Noise and Quantum Optical Measurements is the result of more than 40 years of research and teaching. The first three chapters provide the background necessary to understand the basic concepts. Then shot noise and thermal noise are discussed, followed by linear noisy multiparts, the quantum theory of waveguides and resonators, an analysis of phase-insensitive systems, detection, photon probability distributions, solitons, phase-sensitive amplification, squeezing, the quantum theory of solitons and squeezing, and quantum non-demolition measurements. Rich appendices give additional information. The book is intended for graduate students and scientists in physics and engineering. Numerous problems and selected solutions will help readers to deepen their knowledge.
This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics. Written for: Scientists, optical engineers and graduate students
Discrete periodic structures play an important role in physics, and have opened up an exciting new area of investigation in recent years. Questions relating to the control of light in such structures still represent a major challenge. It is this highly active field that is addressed in the present thesis. Using the model system of a photorefractive nonlinearity that allows one to simultaneously create and control photonic lattices by light, the author obtains a comprehensive picture of the control of nonlinear and quantum optics phenomena in photonic lattices. He describes and demonstrates experimentally for the first time resonant transitions in two-dimensional hexagonal lattices, including Rabi oscillations and Landau-Zener tunneling, as well as the direct control and exploitation of these transitions. A particular highlight of this thesis is the study of soliton-cluster switching and control of Zener tunneling.
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
In the almost fifty years that have gone by since the first volume of "Progress in Optics" was published, optics has become one of the most dynamic fields of science. The volumes in this series that have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments. Invariant Optical Fields
This volume presents a review of the research in several areas of modern optics written by experts well-known in the international scientific community. The first chapter discusses properties and methods of production and detection of coherent superpositions of macroscopically distinguishable states of light (the so-called Schrodinger cat states). Chapter two deals with the phase-shift method, which originated in the 1930s, for the analysis of potential-scattering problems in atomic and nuclear physics. Recently this approach has been applied to wave propagation in one-dimensional inhomogeneous media. Chapter three is concerned with the statistical properties of dynamic laser speckles that arise from scattering objects with rough surfaces undergoing translation and rotation. A moving phase-screen model is employed, which gives a relatively simple formulation of the theory and a clear picture of the time-varying speckle phenomenon. The fourth chapter presents a review of the more important theoretical and experimental results relating to optics of multilayer systems with randomly rough boundaries. The significant theoretical approaches which make it possible to interpret experimental data involving such systems are described, and relevant methods for optical characterization of systems of this kind are outlined. The last chapter presents an account of a theory of the photon transport through turbid media.
In recent years, Raman spectroscopy has undergone a major transformation from a specialist laboratory technique to a practical analytical tool. This change was driven on several parallel fronts by dramatic advances in laser instrumentation, detectors, spectrometers, and optical ?lter technology. This resulted in the advent of a new generation of compact and robust Raman instruments with improved sensitivity and ?exibility. These devices could be operated for the ?rst time by non-specialists outside the laboratory envir- ment. Indeed, Raman spectroscopy is now found in the chemical and phar- ceutical industries for process control and has very recently been introduced into hospitals. Handheld instruments are used in forensic and other security applications and battery-operated versions for ?eld use are found in envir- mental and geological studies. Simultaneously, major advances have been seen in the development of powerful processing methods, some driven by the progress of related spect- scopic methods such as NIR absorption spectroscopy. Numerous chemometric packages are available for advanced analysis of data. These do not require specialist user knowledge (although caution is required in interpreting - sults) and provide further enhanced sensitivity and capability to the Raman technique. In this book we focus on two such major ?elds, biomedical and ph- maceutical. The book is aimed at life sciences and pharmaceutical re- erships. Accordingly, the chapter authors emphasize explanatory material with practical implications rather than focusing on mathematical detail.
Photonic Crystals are the newest types of optical material being
developed for commercial applications in industry. They are likely
to provide an exciting new tool for the manipulations of photons
and have received the attention of both academia and industry.
Roadmap on Photonic Crystals gives a detailed explanation of the
background of photonic crystals, the theories behind them,
numerical simulations, crystal structures, fabrication processes,
evaluation methods and proposed applications. This also includes a
roadmap addressing future development and applications. |
![]() ![]() You may like...
Analytical Lens Design, Second Edition
Rafael G. Gonzalez-Acuna
Hardcover
R3,387
Discovery Miles 33 870
Advances in Atomic, Molecular, and…
Susanne F Yelin, Louis F. DiMauro, …
Hardcover
R5,990
Discovery Miles 59 900
Ophthalmic Lenses and Accessories…
Bausch & Lomb Optical Company
Hardcover
R827
Discovery Miles 8 270
|