![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hansch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.
This volume presents a detailed, rigorous treatment of the fundamental theory of electromagnetic pulse propagation in causally dispersive media that is applicable to dielectric, conducting, and semiconducting media. Asymptotic methods of approximation based upon saddle point methods are presented in detail.
This book will address the advances, applications, research results, and emerging areas of optics, photonics, computational approaches, nano-photonics, bio-photonics, with applications in information systems. The objectives are to bring together novel approaches, analysis, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information. The book will concentrate on new approaches to information systems, including integration of computational algorithms, bio-inspired models, photonics technologies, information security, bio-photonics, and nano-photonics. Applications include bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on nano-scale, quantum optics, super resolution imaging, photonics for biological applications, microscopy, information optics, and holographic information systems.
Laser materials processing has made tremendous progress and is now at the forefront of industrial and medical applications. The book describes recent advances in smart and nanoscaled materials going well beyond the traditional cutting and welding applications. As no analytical methods are described the examples are really going into the details of what nowadways is possible by employing lasers for sophisticated materials processing giving rise to achievements not possible by conventional materials processing.
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
The Workshop "Science with the VLT in the ELT Era" held in Garching from 8th to 12th October 2007 was organised by ESO, with support from its Scienti c and Technical Committee, to provide a forum for the astronomical community to debate the long term future of ESO's Very Large Telescope (VLT) and its interferometric mode (VLTI). In particular it was considered useful for future planning to evaluate how its science use may evolve over the next decade due to competition and/or synergy with new facilities such as ALMA, JWST and, hopefully, at least one next generation 30-40 m extremely large telescope whose acronym appears in the title to symbolise this wider context. These discussions were also held in the fresh light of the Science Vision recently developed within ASTRONET as the rst step towards a 20 year plan for implementing astronomical facilities-the rst such attempt within Europe. Speci c ideas and proposals for new, second generation VLT/I instruments were also solicited following a tradition set by several earlier Workshops held since the start of the VLT development. The programme consisted of invited talks and reviews and contributed talks and posters. Almost all those given are included here although, unfortunately not the several lively but constructive discussion sessions.
This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm(2) are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schroedinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possible gauges for the field-matter interaction are discussed. Physical phenomena, ranging from paradigmatic Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high-order harmonics, the ionization and dissociation of molecules, as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way, the theoretical background for state of the art experiments with strong and short laser pulses is given. The new text is augmented by several additional exercises and now contains a total of forty-eight problems, whose worked-out solutions are given in the last chapter. In addition, some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature.
Light Scattering by Systems of Particles comprehensively develops the theory of the null-field method, while covering almost all aspects and current applications. The Null-field Method with Discrete Sources is an extension of the Null-field Method (also called T-Matrix Method) to compute light scattering by arbitrarily shaped dielectric particles. It also incorporates FORTRAN programs and exemplary simulation results that demonstrate all aspects of the latest developments of the method. Worked examples of the application of the FORTRAN programs show readers how to adapt or modify the programs for his specific application. "
This book reports on the development of a pioneering light source architecture of the so-called Petawatt Field Synthesizer (PFS) system, which is based on short-pulse pumped, optical parametric chirped pulse amplification (OPCPA), driven by a homemade, 1-ps diode-pumped Yb:YAG. At a few-cycle pulse duration of the amplified pulses, this architecture yields record levels of peak power and temporal contrast, the latter boasting a 100-times faster rise time from the noise level to peak intensity of the pulse compared to conventional laser systems. This allows investigation of the true laser-solid interaction without premature plasma expansion and without lossy pulse cleaning by e.g. plasma mirrors. The book describes several concepts for the generation of broadband, high-energy and high-contrast seed pulses, as well as the OPCPA development, few-cycle pulse compression and contrast characterization in a concise and insightful manner. The theory chapter serves as an excellent and accessible primer on OPCPA and other nonlinear interactions, while the experimental parts provide an excellent description of the challenges of developing such a novel architecture and some of the innovative solutions to overcome them.
This comprehensive book makes the important technologies and mathematical concepts behind today's optical communications systems accessible and understandable to practicing and future electrical and communication engineers. Featuring nearly 400 figures and over 900 equations, the book provides the practical engineering details and mathematical tools necessary to analyze and design optical fiber systems.
This book covers the latest progress in the field of transparent ceramics, emphasizing their processing as well as solid-state lasers. It consists of 10 chapters covering the synthesis, characterization and compaction, fundamentals of sintering, densification of transparent ceramics by different methods as well as transparent ceramic applications. This book can be used as a reference for senior undergraduate to postgraduate students, researchers, engineers and material scientists working in solid-state physics.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Photons are an attractive option for testing fundamental quantum physics and developing new quantum-enhanced technology, including highly advanced computers and simulators, as well as precision sensing beyond shot-noise. Traditionally, bulk optical components have been bolted onto optical benches to realize metre-scale quantum circuits. However this approach is ultimately proving unwieldy for increasing the complexity and for scaling up to practical quantum technologies based on photons. The work presented here demonstrates a series of quantum photonic devices based on waveguide circuits embedded in miniature monolithic chips. This represents a paradigm shift in the underlying architecture of quantum optics and provides key building blocks for all-optical and hybrid quantum technologies.
This book provides an attempt to convey the colorful facets of condensed matter systems with reduced dimensionality. Some of the specific features predicted for interacting one-dimensional electron systems, such as charge- and spin-density waves, have been observed in many quasi-one-dimensional materials. The two-dimensional world is even richer: besides d-wave superconductivity and the Quantum Hall Effect - perhaps the most spectacular phases explored during the last two decades - many collective charge and spin states have captured the interest of researchers, such as charge stripes or spontaneously generated circulating currents. Recent years have witnessed important progress in material preparation, measurement techniques and theoretical methods. Today larger and better samples, higher flux for neutron beams, advanced light sources, better resolution in electron spectroscopy, new computational algorithms, and the development of field-theoretical approaches allow an in-depth analysis of the complex many-body behaviour of low-dimensional materials. The epoch when simple mean-field arguments were sufficient for describing the gross features observed experimentally is definitely over. The Editors' aim is to thoroughly explain a number of selected topics: the application of dynamical probes, such as neutron scattering, optical absorption and photoemission, as well as transport studies, both electrical and thermal. Some of the more theoretical chapters are directly relevant for experiments, such as optical spectroscopy, transport in one-dimensional models, and the phenomenology of charge inhomogeneities in layered materials, while others discuss more general topics and methods, for example the concept of a Luttinger liquid and bosonization, or duality transformations, both promising tools for treating strongly interacting many-body systems.
This book discusses the recent advances in the area of near-field
Raman scattering, mainly focusing on tip-enhanced and
surface-enhanced Raman scattering. Some of the key features covered
here are the optical structuring and manipulations, single molecule
sensitivity, analysis of single-walled carbon nanotubes, and
analytic applications in chemistry, biology and material sciences.
This book also discusses the plasmonic materials for better
enhancement, and optical antennas. Further, near-field microscopy
based on second harmonic generation is also discussed. Chapters
have been written by some of the leading scientists in this field,
who present some of their recent work in this field.
This volume provides a discussion of the challenges and perspectives of electromagnetics and network theory and their microwave applications in all aspects. It collects the most interesting contribution of the symposium dedicated to Professor Peter Russer held in October 2009 in Munich.
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. "Quantum Dot Devices" is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source."
In 1690, Christiaan Huygens (1629-1695) published TraitA(c) de la LumiA]re, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to TraitA(c) de la LumiA]re. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in the context of his optics as a whole, which was dominated by his lifelong pursuit of theoretical and practical dioptrics. In so doing, this book offers the first account of the development of Huygens' mathematical analysis of lenses and telescopes and its significance for the origin of the wave theory of light. As Huygens applied his mathematical proficiency to practical issues pertaining to telescopes a "including trying to design a perfect telescope by means of mathematical theory a" his dioptrics is significant for our understanding of seventeenth-century relations between theory and practice. With this full account of Huygens' optics, this book sheds new light on the history of seventeenth-century optics and the rise of the new mathematical sciences, as well as Huygens' oeuvre as a whole. Students of the history of optics, of early mathematical physics, and the Scientific Revolution, will find this book enlightening.
Terahertz (THz) radiation, which is electromagnetic radiation in a frequency int- val from 0.3 to 10 THz (1 mm-30 ?m wavelength), is the next frontier in science and technology. This band occupies a large portion of the electromagnetic sp- trum between the infrared and microwave bands. Basic research, new initiatives, and developments in advanced sensing and imaging technology with regard to the THz band remain unexplored compared to the relatively well-developed science and technology in the microwave and optical frequencies. Historically, THz technologies were used mainly within the astronomy c- munity for studying the background of cosmic far-infrared radiation, and by the laser-fusion community for the diagnostics of plasmas. Since the ?rst demonstration of THz wave time-domain spectroscopy in the late 1980s, there has been a series of signi?cant advances (particularly in recent years) as more intense THz sources and higher sensitivity detectors provide new opportunities for understanding the basic science in the THz frequency range.
This thesis reports the remarkable discovery that, by arranging the dipoles in an ordered array with particular spacings, it is possible to greatly enhance the cross-section and achieve a strong light-matter coupling (>98% of the incident light). It also discusses the broad background to cooperative behaviour in atomic ensembles, and analyses in detail effects in one- and two-dimensional atomic arrays. In general, when light interacts with matter it excites electric dipoles and since the nineteenth century it has been known that if the amplitude of these induced dipoles is sufficiently large, and their distance apart is on the scale of the wavelength of the light, then their mutual interaction significantly modifies the light-matter interaction. However, it was not known how to exploit this effect to modify the light-matter interaction in a desirable way, for example in order to enhance the optical cross-section.
Reviews in Fluorescence 2009, the sixth volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any lab working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource. Reviews in Fluorescence 2009 topics include: Hot electron-Induced Electrogenerated Chemiluminescence. Time-correlated, single-photon counting methods in endothelial cell mechanobiology. Origin of Tryptophan Fluorescence. Protein Folding, Unfolding and Aggregation Processes revealed by Rapid Sampling of Time-Domain Fluorescence.
In this volume, six review articles which cover a broad range of
topics of current interest in modern optics are included.
This volume presents a detailed, rigorous treatment of the fundamental theory of electromagnetic pulse propagation in causally dispersive media that is applicable to dielectric, conducting, and semiconducting media. Asymptotic methods of approximation based upon saddle point methods are presented in detail. |
You may like...
Nuclear Magnetic Resonance Spectroscopy…
Mark A. Nanny, Roger A. Minear, …
Hardcover
R4,302
Discovery Miles 43 020
Methods for Structure Elucidation by…
G. Batta, K. Koever, …
Hardcover
R6,600
Discovery Miles 66 000
EPR of Free Radicals in Solids I…
Anders Lund, Masaru Shiotani
Hardcover
R8,756
Discovery Miles 87 560
Biological NMR Spectroscopy
John L. Markley, Stanley J. Opella
Hardcover
R4,209
Discovery Miles 42 090
|