Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Optics (light)
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, sometimes illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and first described in print in this series). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. One half of Energy and Color focuses on the physics of energy, power, illuminance, and intensity of light, and how these relate to the photographic exposure, including a detailed example that follows the emission of light from the sun all the way through to the formation of the image in the camera. These concepts are described in both their traditional manner, but also using very-low sensitivity photography as an example, which brings the physical concepts to the fore in a visible way, whereas they are often hidden with ordinary high-speed photographic detectors. Energy and Color also considers color in terms of the spectrum of light, how it interacts with the subject, and how the camera's light detector interacts with the image focused upon it. But of equal concern is the only partially-understood and sometimes unexpected ways in which the human eye/brain interprets this spectral stimulus as color. The volume covers basic photographic subjects such as shutter, aperture, ISO, metering and exposure value, but also given their relations to the larger themes of the book less familiar topics such as the Jones-Condit equation, Lambertian versus isotropic reflections, reflection and response curves, and the opponent-process model of color perception. Although written at a beginning undergraduate level, the topics are chosen for their role in a more general discussion of the relation between science and art that is of interest to readers of all backgrounds and levels of expertise.
This thesis presents first successful experiments to carrier-envelope-phase stabilize a high-power mode-locked thin-disk oscillator and to compress the pulses emitted from this laser to durations of only a few-optical cycles. Moreover, the monograph introduces several methods to achieve power-scalability of compression and stabilization techniques. All experimental approaches are compared in detail and may serve as a guideline for developing high-power waveform controlled, few-cycle light sources which offer tremendous potential to exploit extreme nonlinear optical effects at unprecedentedly high repetition rates and to establish table-top infrared light sources with a unique combination of brilliance and bandwidth. As an example, the realization of a multi-Watt, multi-octave spanning, mid-infrared femtosecond source is described. The thesis starts with a basic introduction to the field of ultrafast laser oscillators. It subsequently presents additional details of previously published research results and establishes a connection between them. It therefore addresses both newcomers to, and experts in the field of high-power ultrafast laser development.
This book presents peer-reviewed articles from the 20th International Symposium on Optomechatronic Technologies (ISOT 2019), held in Goa, India. The symposium brought together students, researchers, professionals, and academicians in the field of optomechatronics and related areas on a common platform conducive to academic interaction with business professionals.
This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.
This book systematically explains the fundamentals of system-level electromagnetic compatibility and introduces the basic concept of system-level electromagnetic compatibility quantification design. The topics covered include the critical technologies in the top-down quantification design of electromagnetic compatibility, quantification design of system-level electromagnetic compatibility, evaluation methods and application examples, quality control and application examples of electromagnetic compatibility development process, and real-world engineering example analysis of electromagnetic compatibility.The book proposes a top-down system-level electromagnetic compatibility quantification design method and is the first book to describe in detail how to quantitatively evaluate and predict system-level electromagnetic compatibility performance. It includes abundant engineering examples and experimental data demonstrating the usage and results of the top-down quantification design methods of system-level electromagnetic compatibility.It enables readers to obtain a thorough understanding of the theory and methods of system-level electromagnetic compatibility quantification design as well as the methodologies for engineering practice.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme "Trends in Electro-optics Instrumentation for Strategic Applications". Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.
This book explores emerging topics in atomic- and nano-scale electronics after the era of Moore's Law, covering both the physical principles behind, and technological implementations for many devices that are now expected to become key elements of the future of nanoelectronics beyond traditional complementary metal-oxide semiconductors (CMOS). Moore's law is not a physical law itself, but rather a visionary prediction that has worked well for more than 50 years but is rapidly coming to its end as the gate length of CMOS transistors approaches the length-scale of only a few atoms. Thus, the key question here is: "What is the future for nanoelectronics beyond CMOS?" The possible answers are found in this book. Introducing novel quantum devices such as atomic-scale electronic devices, ballistic devices, memristors, superconducting devices, this book also presents the reader with the physical principles underlying new ways of computing, as well as their practical implementation. Topics such as quantum computing, neuromorphic computing are highlighted here as some of the most promising candidates for ushering in a new era of atomic-scale electronics beyond CMOS.
This edited volume reviews the current state of the art in the additive manufacturing of optical componentry, exploring key principles, materials, processes and applications. A short introduction lets readers familiarize themselves with the fundamental principles of the 3D printing method. This is followed by a chapter on commonly-used and emerging materials for printing of optical components, and subsequent chapters are dedicated to specific topics and case studies. The high potential of additive manufactured optical components is presented based on different manufacturing techniques and accompanied with extensive examples - from nanooptics to large scale optics - and taking research and industrial perspectives. Readers are provided with an extensive overview of the new possibilities brought about by this alternative method for optical components manufacture. Finally, the limitations of the method with respect to manufacturing techniques, materials and optical properties of the generated objects are discussed. With contributions from experts in academia and industry, this work will appeal to a wide readership, from undergraduate students through engineers to researchers interested in modern methods of manufacturing optical components.
Two typical hybrid laser surface modification processes, i.e. electro/magnetic field aided laser process and supersonic laser deposition technology, are introduced in the book, to solve the common problems in quality control and low efficiency of the laser-only surface modification technology, high contamination and high consumption of the traditional surface modification technology. This book focuses on the principle, characteristics, special equipment, process and industrial applications of the hybrid laser surface modification processes based on the recent research results of the author's group, and provides theoretical guidance and engineering reference for the researchers and engineers engaging in the field of surface engineering and manufacturing.
This book discusses the spectral properties of solid-state laser materials, including emission and absorption of light, the law of radiative and nonradiative transitions, the selection rule for optical transitions, and different calculation methods of the spectral parameters. The book includes a systematic presentation of the authors' own research works in this field, specifically addressing the stimulated nonradiative transition theory and the apparent crystal field model. This volume is helpful resource for researchers and graduate students in the fields of solid spectroscopy and solid-state laser material physics, while also serving as a valuable reference guide for instructors and advanced students of physics.
This book presents recent advances in studies of light propagation, scattering, emission and absorption in random media. Many natural and biological media vary randomly in time and space. Examples are terrestrial atmosphere and ocean, biological liquids and tissues to name but a few.
This book highlights recent advances of optical spatial solitons in photorefractive materials ranging broadly from the coupling, modulation instability, effect of pyroelectricity, and the stability of photorefractive solitons, among other topics. Photorefractive solitons have been at the forefront of research because of their formation at low laser powers and unique saturable nonlinearity present in photorefractive materials which supports solitons in (2+1) D. There has been a spurt in research on photorefractive solitons recently, which has contributed to a greater understanding of the theoretical foundation of photorefractive solitons as also of their various interesting and practical applications. The book elucidates the diversity of photorefractive solitons and provides a good resource for students, researchers, and professionals in the area of nonlinear optics.
This book addresses microwave chemistry at both the physical and molecular level. Its main goal is to elaborate the highly complex scientific issues involved in the fundamental theory of microwave chemistry, and in industrialized applications in the near future.The book provides detailed insights into the characterization and measurement of dielectric properties under complex conditions, such as chemical reactions, high-temperature environments, etc. Considerable attention is paid to the theory of dynamics in microwave chemistry, from the view of both physical level and molecular level. Microwave-Material Interactions simulation is used for physical dynamical analysis, while a Microwave-Molecules Interactions methodology is proposed for molecular dynamical analysis. In turn, calculational examples are introduced for better description and validation, respectively. Lastly, the book proposes design strategies and calculational examples for large-scale application. Richly illustrated and including a wealth of worked-out examples, this book is ideal for all researchers, students and engineers who are just getting started in the dynamics of microwave chemistry.
This thesis builds on recent innovations in multi-phase emulsion droplet design to demonstrate that emulsion morphologies enable a useful variety of dynamic optical phenomena. Despite the highly dynamic nature of fluid morphologies and their utility for stimuli-responsive, dynamic optical materials and devices, fluid matter is underrepresented in optical technology. Using bi-phase emulsion droplets as refractive micro-optical components, this thesis realizes micro-scale fluid compound lenses with optical properties that vary in response to changes in chemical concentrations, structured illumination, and thermal gradients. Theoretical considerations of emulsions as optical components are used to explain a previously unrecognized total internal reflection-enabled light interference phenomenon in emulsion droplets that results in rich structural coloration. While this work is focused on the fundamental optics of emulsion droplets, it also facilitates the use of light-emitting emulsion morphologies as chemo-optical transducers for early-stage food-borne pathogen detection. This thesis beautifully demonstrates the virtue of fundamental interdisciplinary exploration of unconventional material systems at the interface of optics, chemistry, and materials science, and the benefits arising from translation of the acquired knowledge into specific application scenarios.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications.
This book introduces the fundamentals and principles of laser shock peening (LSP) for aeronautical materials. It focuses on the innovation in both theory and method related to LSP-induced gradient structures in titanium alloys and Ni-based alloys which have been commonly used in aircraft industries. The main contents of the book include: the characteristics of laser shock wave, the formation mechanism of gradient structures and the strengthening-toughing mechanism by gradient structures. The research has accumulated a large amount of experimental data, which has proven the significant effectiveness of LSP on the improvement of the fatigue performance of metal parts, and related findings have been successfully applied in aerospace field. This book could be used by the researchers who work in the field of LSP, mechanical strength, machine manufacturing and surface engineering, as well as who major in laser shock wave and materials science.
|
You may like...
Roentgen Rays - Memoirs by Roentgen…
Wilhelm Conrad 1845-1923 Roentgen
Hardcover
R755
Discovery Miles 7 550
Ophthalmic Lenses and Accessories…
Bausch & Lomb Optical Company
Hardcover
R792
Discovery Miles 7 920
High Intensity Lasers for nuclear and…
Margherita Zavelani-Rossi
Hardcover
R990
Discovery Miles 9 900
Analytical Lens Design, Second Edition
Rafael G. Gonzalez-Acuna
Hardcover
R3,230
Discovery Miles 32 300
Atlas of the Munsell Color System
A H (Albert Henry) 1858-1 Munsell
Hardcover
R683
Discovery Miles 6 830
|