![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.
This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.
This book presents a survey of modern theoretical techniques in studies of radiative transfer and light scattering phenomena in turbid media. It offers a comprehensive analysis of polarized radiative transfer, and also discusses advances in planetary spectroscopy as far as aerosol layer height determination is of interest. Further, it describes approximate methods of the radiative transfer equation solution for a special case of strongly scattering media. A separate chapter focuses on optical properties of Black Carbon aggregates.
Since the discovery that atomic-size particles can be described as waves, many interference experiments have been realized with electrons to demonstrate their wave behavior. In this book, after describing the different steps that led to the present knowledge, we focus on the strong link existing between photon and electron interferences, highlighting the similarities and the differences. For example, the atomic centers of a hydrogen molecule are used to mimic the slits in the Young's famous interference experiment with light. We show, however, that the basic time-dependent ionization theories that describe these Young-type electron interferences are not able to reproduce the experiment. This crucial point remains a real challenge for theoreticians in atomic collision physics.
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) andTime-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds.In "Quantum Dynamic Imaging: Theoretical and Numerical Methods," leading researchers discuss these exciting state-of-the-art developments and theirimplications for R&D in view of the promise of quantum dynamic imagingscience as the essential tool for controlling matter at the molecular level."
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
By selecting the ?rst week of June 2008 for the Nobel Symposium "Single Molecular Spectroscopy in Chemistry, Physics and Biology", Rudolf Rigler, Jerker Widengren and Astrid Grasl .. und have once again won the top prize for Meeting Organizers, providing us with a Mediterranean climate on top of the warm hospitality that is unique to Sweden. The S? anga Sab .. y Conference Center was an ideal place to spend this wonderful week, and the comfort of this beautiful place blended perfectly with the high calibre of the scienti?c programme. It was a special privilege for me to be able to actively participate in this meeting on a ?eld that is in many important ways complementary to myownresearch. Iwasimpressedbytheinterdisciplinarywaysinwhichsingle molecule spectroscopy has evolved and is currently pursued, with ingredients originating from physics, all branches of chemistry and a wide range of b- logical and biomedical research. A beautiful concert by Semmy Stahlhammer and Johan Ull' en further extended the interdisciplinary character of the s- posium. I would like to combine thanks to Rudolf, Jerker and Astrid with a glance into a future of other opportunities to enjoy top-levelscience combined with warm hospitality in the Swedish tradition. Z.. urich, Kurt Wuth .. rich April 2009 Participants of the Nobel-Symposium 138: First row: Sarah Unterko?er, Anders Liljas, Xiao-Dong Su, Birgitta Rigler, Carlos Bus- mante, Toshio Yanagida, Steven Block, Xiaowei Zhuang, Sunney Xie. Second row: Ivan Scheblykin, Lars Thelander, Petra Schwille, Watt W.
This book discusses the analysis, circuit modeling, and applications of transmission lines loaded with electrically small resonators (mostly resonators inspired by metamaterials), focusing on the study of the symmetry-related electromagnetic properties of these loaded lines. It shows that the stopband functionality (resonance) that these lines exhibit can be controlled by the relative orientation between the line and the resonator, which determines their mutual coupling. Such resonance controllability, closely related to symmetry, is essential for the design of several microwave components, such as common-mode suppressed differential lines, novel microwave sensors based on symmetry disruption, and spectral signature radio-frequency barcodes. Other interesting aspects, such as stopband bandwidth enhancement (due to inter-resonator coupling, and related to complex modes) and magnetoelectric coupling between the transmission lines and split-ring resonators, are also included in the book.
Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.
This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.
This dissertation focuses on the study of novel high-gain free-electron laser (FEL) operation schemes with external seed lasers. The technique of manipulating the phase space of the electron beam, which is widely used in novel seeded FEL schemes, is systematically studied. Several novel FEL schemes are proposed for the generation of intense coherent FEL pulses with short wavelength, sub-femtosecond pulse length or multiple carrier frequency properties, which meet the needs of FEL users. Results of experiments are described for the recently proposed FEL schemes such as echo-enabled harmonic generation and cascaded high-gain harmonic generation. New photon/electron beam diagnostic methods are also developed for these experiments and future high-gain FEL facilities.
The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.
Quantum trajectory theory is largely employed in theoretical quantum optics and quantum open system theory and is closely related to the conceptual formalism of quantum mechanics (quantum measurement theory). However, even research articles show that not all the features of the theory are well known or completely exploited. We wrote this monograph mainly for researchers in theoretical quantum optics and related ?elds with the aim of giving a self-contained and solid p- sentation of a part of quantum trajectory theory (the diffusive case) together with some signi?cant applications (mainly with purposes of illustration of the theory, but which in part have been recently developed). Another aim of the monograph is to introduce to this subject post-graduate or PhD students. To help them, in the most mathematical and conceptual chapters, summaries are given to ?x ideas. Moreover, as stochastic calculus is usually not in the background of the studies in physics, we added Appendix A to introduce these concepts. The book is written also for ma- ematicians with interests in quantum theories. Quantum trajectory theory is a piece of modern theoretical physics which needs an interplay of various mathematical subjects, such as functional analysis and probability theory (stochastic calculus), and offers to mathematicians a beautiful ?eld for applications, giving suggestions for new mathematical developments.
This book is aimed at those readers who already have some knowledge of mathematical methods and have also been introduced to the basic ideas of quantum optics. It should be attractive to students who have already explored one of the more introductory texts such as Loudon's The quantum theory of light (2/e, 1983, OUP) and are seeking to acquire the mathematical skills used in real problems. This book is not primarily about the physics of quantum optics but rather presents the mathematical methods widely used by workers in this field. There is no comparable book which covers either the range or the depth of mathematical techniques.
Throughout my whole career including student time I have had a feeling that leaning and teaching electromagnetism, especially macroscopic Maxwell equations (M-eqs) is dif?cult. In order to make a good use of these equations, it seemed necessary to be able to use certain empirical knowledges and model-dependent concepts, rather than pure logics. Many of my friends, colleagues and the physicists I have met on various occasions have expressed similar impressions. This is not the case with microscopic M-eqs and quantum mechanics, which do not make us feel reluctant to teach, probably because of the clear logical structure. What makes us hesitate to teach is probably because we have to explain what we ourselves do not completely understand. Logic is an essential element in physics, as well as in mathematics, so that it does not matter for physicists to experience dif?culties at the initial phase, as far as the logical structure is clear. As the we- known principles of physics say, "a good theory should be logically consistent and explain relevant experiments." Our feeling about macroscopic M-eqs may be related with some incompleteness of their logical structure.
The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest. The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy. The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kolkata; Sanjib Chatterjee, Raja Ramanna Centre for Advanced Technology, Indore; Takeo Sasaki, Tokyo University, Japan; Lakshminarayan Hazra, Emeritus Professor, University of Calcutta, Kolkata; Shyam Akashe, ITM University, Gwalior and Vasudevan Lakshminarayanan, University of Waterloo, Canada. The subsequent parts focus on topic-wise contributory papers in Application of Solar Energy; Diffraction Tomography; E.M. Radiation Theory and Antenna; Fibre Optics and Devices; Photonics for Space Applications; Micro-Electronics and VLSI; Nano-Photonics, Bio-Photonics and Bio-Medical Optics; Non-linear Phenomena and Chaos; Optical and Digital Data and Image Processing; Optical Communications and Networks; Optical Design; Opto-Electronic Devices; Opto-Electronic Materials and Quantum Optics and Information Processing.
This thesis sheds new light on the fascinating properties of composite quantum systems. Quantum systems of different sizes, ranging from small bipartite systems to large many-body ensembles, can be studied with the help of modern quantum optical experiments. These experiments make it possible to observe a broad variety of striking features, including nonclassical correlations, complex dynamics and quantum phase transitions. By adopting the complementary perspectives of quantum information theory, quantum chemistry and many-body theory, the thesis develops new methods for the efficient characterization and description of interacting, composite quantum systems.
This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
New Edition: Electromagnetic Anisotropy and Bianisotropy (2nd Edition)The topics of anisotropy and bianisotropy are fundamental to electromagnetics from both theoretical and experimental perspectives. These properties underpin a host of complex and exotic electromagnetic phenomenons in naturally occurring materials and in relativistic scenarios, as well as in artificially produced metamaterials. As a unique guide to this rapidly developing field, the book provides a unified presentation of key classic and recent results on the studies of constitutive relations, spacetime symmetries, planewave propagation, dyadic Green functions, and homogenization of composite materials. This book also offers an up-to-date extension to standard treatments of crystal optics with coverage on both linear and weakly nonlinear regimes.
This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic from many directions.
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
|
You may like...
An Introduction to the Technique of…
Domenico Cantone, Pietro Ursino
Hardcover
R1,402
Discovery Miles 14 020
Hajnal Andreka and Istvan Nemeti on…
Judit Madarasz, Gergely Szekely
Hardcover
R2,743
Discovery Miles 27 430
Numerical Linear Algebra with Julia
Eric Darve, Mary Wootters
Paperback
R2,215
Discovery Miles 22 150
Interpreting Basic Statistics - A…
Keith S. Cox, Zealure C Holcomb
Paperback
R1,859
Discovery Miles 18 590
Thermomechanics of Composite Structures…
Yu I. Dimitrienko
Hardcover
Advanced Applications of Biobased…
Shakeel Ahmed, Annu Tomer
Paperback
R5,325
Discovery Miles 53 250
|