![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Optics (light)
Progress in Optics, Volume 63 is the latest release in a series that presents an overview of the state-of-the-art in optics research. In this update, readers will find timely chapters on measuring polarization states, quantum measurement, optical trapping, spatial/spectral correspondence for mono/poly chromatic light diffraction, and photonic fractional signal processing, amongst other timely topics.
This book provides a unified treatment of the characteristics of
telescopes of all types, both those whose performance is set by
geometrical aberrations and the effect of the atmosphere, and those
diffraction-limited telescopes designed for observations from above
the atmosphere. The emphasis throughout is on basic principles,
such as Fermat's principle, and their application to optical
systems specifically designed to image distant celestial
sources. * Geometrical aberration theory based on Fermat's
principle
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.
This book offers a complete guide to designing Linear Fresnel Reflector Systems for concentrating solar radiation. It includes theoretical analyses, computational tools and mathematical formulae to facilitate the development, design, construction and application of these systems. In addition, the book presents a concise yet thorough treatment of the theory behind these systems, and provides useful and efficient calculation procedures that can be used to model and develop their practical applications. Along with the theoretical analyses provided in the book, the physical background is explained using mathematical formulae, illustrations, graphs and tables. Methods are presented for solving the non-linear mathematical systems that describe a significant variety of cases. In addition, MATLAB codes are supplied (both in the text and online). Consequently, readers interested in applying the methodology presented here will have all the source codes at hand, allowing them to easily expand on them by introducing appropriate modifications for their respective design configuration. Given its scope, the book will be of interest to engineers and researchers, who can use their scientific background to help them develop more energy-efficient Linear Fresnel Reflector systems. It will also appeal to students studying these systems for the first time, as it supplies a comprehensive overview of their theoretical analysis and applications.
Electron storage rings play a crucial role in many areas of modern scientific research. Introduction to Beam Dynamics in High-Energy Electron Storage Rings describes the physics of particle behaviour in these machines. Starting with an outline of the history, uses and structure of electron storage rings, the book develops the foundations of beam dynamics, covering particle motion in the components used to guide and focus the beams, the effects of synchrotron radiation, and the impact of interactions between the particles in the beams.
Written by the world's leading expert, this is an accessible introduction to optical dating for earth scientists who rely on the results given without needing to understand the technicalities of the technique. The basic notions and procedures are outlined through illustrative case histories. In addition the book provides active practitioners with a full understanding of the theory, through a series of technical notes, and brings together the various strands of ongoing research.
Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends.
This thesis reports on sparsity-based multipath exploitation methods for through-the-wall radar imaging. Multipath creates ambiguities in the measurements provoking unwanted ghost targets in the image. This book describes sparse reconstruction methods that are not only suppressing the ghost targets, but using multipath to one's advantage. With adopting the compressive sensing principle, fewer measurements are required for image reconstruction as compared to conventional techniques. The book describes the development of a comprehensive signal model and some associated reconstruction methods that can deal with many relevant scenarios, such as clutter from building structures, secondary reflections from interior walls, as well as stationary and moving targets, in urban radar imaging. The described methods are evaluated here using simulated as well as measured data from semi-controlled laboratory experiments.
This clearly written thesis discusses the development of a highly innovative single-photon source that uses active optical switching, known as multiplexing, to increase the probability of delivering photons into a single mode. Improving single-photon sources is critical in advancing the state of the art in photonic quantum technologies for information processing and communications.
This volume is about ultra high-speed cameras, which enable us to see what we normally do not see. These are objects that are moving very fast, or that we just ignore. Ultra high-speed cameras invite us to a wonderland of microseconds. There Alice (the reader) meets a ultra high-speed rabbit (this volume) and travels together through this wonderland from the year 1887 to 2017. They go to the horse riding ground and see how a horse gallops. The rabbit takes her to a showroom where various cameras and illumination devices are presented. Then, he sends Alice into semiconductor labyrinths, wind tunnels, mechanical processing factories, and dangerous explosive fields. Sometimes Alice is large, and at other times she is very small. She sits even inside a car engine. She falls down together with a droplet. She enters a microbubble, is thrown out with a jet stream, and finds herself in a human body. Waking up from her dream, she sees children playing a game: "I see what you do not see, and this is....". Alice thinks: "The ultra high-speed rabbit showed me many things which I had never seen. Now I will go again to this wonderland, and try to find something new.
David Lindberg presents the first critical edition of the text of Roger Bacon's classic work Perspectiva, prepared from Latin manuscripts, accompanied by a facing-page English translation, critical notes, and a full study of the text. Also included is an analysis of Bacon's sources, influence, and role in the emergence of the discipline of perspectiva. About Roger Bacon: Roger Bacon (c.1220-c.1292) is one of the most renowned thinkers of the Middle Ages, a philosopher-scientist praised and mythologized for his attack on authority and his promotion of what he called experimental science. He was a leading figure in the intellectual life of the thirteenth century, a campaigner for educational reform, and a major disseminator of Greek and Arabic natural philosophy and mathematical science. About Perspectiva: The science that Roger Bacon most fully mastered was perspectiva, the study of light and vision (what would later become the science of optics). His great treatment of the subject, the Perspectiva, written in about 1260, was the first book by a European to display a full mastery of Greek and Arabic treatises on the subject, and through it Bacon was instrumental in defining this scientific discipline for the next 350 years.
This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community. The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.
This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber's photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simulations.
Why are candle flames yellow? Why does ultraviolet light supposedly kill vampires? What about the monocle? Why was the monocle-a corrective lens that only corrects vision in a single eye-so popular among businessmen and politicians for so many years? Stephen R. Wilk answers all this and so much more in Sandbows and Black Lights. This book is a collection of original essays on weird and unusual topics surrounding optics. Wilk uses the BBC's formula of "Education by Stealth" to explain unusual facets of science and technology through the matrix of interesting and cultural paths, all the while weaving in math equations in an accessible way. The first part of the book focuses on the history, the second moves to odd scientific approaches to visual phenomena, and the third part explains the unique use of optics in fiction, movies, and comic books over time. Chapters cover everything from endless corridors to the beam of light over treasure chests in movies. Whether he is explaining a rare discovery or answering a seemingly unapproachable question, Wilk is able to lure readers in on every page. He has a unique ability to turn complex science into an engaging story, and this book is full of narratives on esoteric topics anyone will find intriguing. Sandbows and Black Lights provides an enticing and entertaining look at physical illusions in a whole new way.
This thesis describes the experimental and theoretical basics of free electron laser science, serving as an excellent introduction for newcomers to this young field. Beyond that, it addresses electron-beam lifetimes in third-generation synchrotron light sources, in particular with a view to optimizing them in the forthcoming ESRF upgrade. The lifetime of the electron beam in a storage ring is a measure of how fast electrons are being lost, and is thus an essential parameter determining the required injection frequency, which in turn affects beam stability and power consumption. The main limitation on the beam lifetime in these synchrotron light sources is the Touschek effect, i.e. the single scattering between two electrons in a bunch. In this thesis a model able to predict the Touschek lifetime is presented. The model is successfully tested against measurements and used to study the influence of other parameters such as current and size of vacuum chamber. Not least, it enables the settings of sextupole magnets to be optimized.
This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range. Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry-Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic. A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.
This workbook is designed to supplement optics textbooks and covers all the traditional topics of geometrical optics. Terms, equations, definitions, and concepts are discussed briefly and explained through a series of problems that are worked out in a step-by-step manner which simplifies the problem-solving process. Additional practice problems are provided at the end of each chapter. * - An indispensable tool when studying for the state and National Boards * - An ideal supplement to optics textbooks * - Covers the traditional topics of geometrical optics.
This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the recent developments and future trends of this promising and multifaceted technology.
This is a translation of work which first appeared in 1816 in Germany. Although Schopenhauer himself acknowledged that the treatise did not present any new and significant doctrines to his philosophy, he nonetheless considered it important enough to publish it again in revised form toward the end of his life, in 1854. As Professor Cartwright argues in his introduction, the book's philosophical value is to be found in the means it provides for increasing our understanding of Schopenhauer's philosophy, both in terms of its method and meaning. Not only does this book aim to offer insight into the younger Schopenhauer, it is also a significant document in the history of optics and colour theory. |
You may like...
Applied Scanning Probe Methods VII…
Bharat Bhushan, Harald Fuchs
Hardcover
R4,075
Discovery Miles 40 750
Controlled Atmosphere Transmission…
Thomas Willum Hansen, Jakob Birkedal Wagner
Hardcover
R3,445
Discovery Miles 34 450
|