Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
This book brings together the impact of Prof. John Horton Conway, the playful and legendary mathematician's wide range of contributions in science which includes research areas-Game of Life in cellular automata, theory of finite groups, knot theory, number theory, combinatorial game theory, and coding theory. It contains transcripts where some eminent scientists have shared their first-hand experience of interacting with Conway, as well as some invited research articles from the experts focusing on Game of Life, cellular automata, and the diverse research directions that started with Conway's Game of Life. The book paints a portrait of Conway's research life and philosophical direction in mathematics and is of interest to whoever wants to explore his contribution to the history and philosophy of mathematics and computer science. It is designed as a small tribute to Prof. Conway whom we lost on April 11, 2020.
Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level.
This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics withoutdoing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering philosophically important material, presented in a philosophically informed way. The exercises give readers opportunities to recreate some mathematics that will illuminate important readings in philosophy ofmathematics. Topics include primitive recursive arithmetic, Peano arithmetic, Godel's theorems, interpretability, the hierarchyof sets, Frege arithmetic and intuitionist sentential logic. The book is intended for readers who understand basic properties of the natural and realnumbers and have some background in formal logic."
First published in 2000. This is Volume I of eight in the Philosophy of Logic and Mathematics series. Written in 1933, in The Nature of Mathematics offers a critical survey the author seeks to present a considered critical exposition of Principia Mathematica and to give supplementary accounts of the formalist and intuitionist doctrines in sufficient detail to lighten the paths of all who may be provoked to read the original papers.
In Western Civilization Mathematics and Music have a long and interesting history in common, with several interactions, traditionally associated with the name of Pythagoras but also with a significant number of other mathematicians, like Leibniz, for instance. Mathematical models can be found for almost all levels of musical activities from composition to sound production by traditional instruments or by digital means. Modern music theory has been incorporating more and more mathematical content during the last decades. This book offers a journey into recent work relating music and mathematics. It contains a large variety of articles, covering the historical aspects, the influence of logic and mathematical thought in composition, perception and understanding of music and the computational aspects of musical sound processing. The authors illustrate the rich and deep interactions that exist between Mathematics and Music.
This book deals with the rise of mathematics in physical sciences, beginning with Galileo and Newton and extending to the present day. The book is divided into two parts. The first part gives a brief history of how mathematics was introduced into physics-despite its "unreasonable effectiveness" as famously pointed out by a distinguished physicist-and the criticisms it received from earlier thinkers. The second part takes a more philosophical approach and is intended to shed some light on that mysterious effectiveness. For this purpose, the author reviews the debate between classical philosophers on the existence of innate ideas that allow us to understand the world and also the philosophically based arguments for and against the use of mathematics in physical sciences. In this context, Schopenhauer's conceptions of causality and matter are very pertinent, and their validity is revisited in light of modern physics. The final question addressed is whether the effectiveness of mathematics can be explained by its "existence" in an independent platonic realm, as Goedel believed. The book aims at readers interested in the history and philosophy of physics. It is accessible to those with only a very basic (not professional) knowledge of physics.
Why do some children seem to learn mathematics easily and others
slave away at it, learning it only with great effort and apparent
pain? Why are some people good at algebra but terrible at geometry?
How can people who successfully run a business as adults have been
failures at math in school? How come some professional
mathematicians suffer terribly when trying to balance a checkbook?
And why do school children in the United States perform so dismally
in international comparisons? These are the kinds of real questions
the editors set out to answer, or at least address, in editing this
book on mathematical thinking. Their goal was to seek a diversity
of contributors representing multiple viewpoints whose expertise
might converge on the answers to these and other pressing and
interesting questions regarding this subject.
This is a reconstruction of Henri Poincare's anti-realist philosophy of mathematics. Although Poincare is recognized as the greatest mathematician of the late 19th century, his contribution to the philosophy of mathematics is not generally highly regarded. Poincare criticized logicism and axiomatic set theory, and he argued that we have mathematical intuitions. Many regard his remarks as idiosyncratic, and based upon a misunderstanding of logic and logicism. This book argues that Poincare's critiques are not based on misunderstanding. Rather, they are grounded in a coherent and attractive foundation of neo-Kantian constructivity.
This work provides descriptions, explanations and examples of the Bayesian approach to statistics, demonstrating the utility of Bayesian methods for analyzing real-world problems in the health sciences. The work considers the individual components of Bayesian analysis.;College or university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker, Inc.
‘Another terrific book by Rob Eastaway’ SIMON SINGH ‘A delightfully accessible guide to how to play with numbers’ HANNAH FRY How many cats are there in the world? What's the chance of winning the lottery twice? And just how long does it take to count to a million? Learn how to tackle tricky maths problems with nothing but the back of an envelope, a pencil and some good old-fashioned brain power. Join Rob Eastaway as he takes an entertaining look at how to figure without a calculator. Packed with amusing anecdotes, quizzes, and handy calculation tips for every situation, Maths on the Back of an Envelope is an invaluable introduction to the art of estimation, and a welcome reminder that sometimes our own brain is the best tool we have to deal with numbers.
In this two-volume compilation of articles, leading researchers reevaluate the success of Hilbert's axiomatic method, which not only laid the foundations for our understanding of modern mathematics, but also found applications in physics, computer science and elsewhere. The title takes its name from David Hilbert's seminal talk Axiomatisches Denken, given at a meeting of the Swiss Mathematical Society in Zurich in 1917. This marked the beginning of Hilbert's return to his foundational studies, which ultimately resulted in the establishment of proof theory as a new branch in the emerging field of mathematical logic. Hilbert also used the opportunity to bring Paul Bernays back to Goettingen as his main collaborator in foundational studies in the years to come. The contributions are addressed to mathematical and philosophical logicians, but also to philosophers of science as well as physicists and computer scientists with an interest in foundations. Chapter 8 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Features Provides an accessible introduction to mathematics in art Supports the narrative with a self-contained mathematical theory, with complete proofs of the main results (including the classification theorem for similarities) Presents hundreds of figures, illustrations, computer-generated graphics, designs, photographs, and art reproductions, mainly presented in full color Includes 21 projects and about 280 exercises, about half of which are fully solved Covers Euclidean geometry, golden section, Fibonacci numbers, symmetries, tilings, similarities, fractals, cellular automata, inversion, hyperbolic geometry, perspective drawing, Platonic and Archimedean solids, and topology New to the Second Edition New exercises, projects and artworks Revised, reorganised and expanded chapters More use of color throughout
This book demonstrates how a radical version of physicalism ('No-Self Physicalism') can offer an internally coherent and comprehensive philosophical worldview. It first argues that a coherent physicalist should explicitly treat a cognitive subject merely as a physical thing and should not vaguely assume an amorphous or even soul-like subject or self. This approach forces the physicalist to re-examine traditional core philosophical notions such as truth, analyticity, modality, apriority because our traditional understandings of them appear to be predicated on a cognitive subject that is not literally just a physical thing. In turn, working on the assumption that a cognitive subject is itself completely physical, namely a neural network-based robot programmed by evolution (hence the term 'No-Self'), the book proposes physicalistic theories on conceptual representation, truth, analyticity, modality, the nature of mathematics, epistemic justification, knowledge, apriority and intuition, as well as a physicalistic ontology. These are meant to show that this No-Self Physicalism, perhaps the most minimalistic and radical version of physicalism proposed to date, can accommodate many aspects that have traditionally interested philosophers. Given its refreshingly radical approach and painstakingly developed content, the book is of interest to anyone who is seeking a coherent philosophical worldview in this age of science.
Hilbert's Programs & Beyond presents the foundational work of David Hilbert in a sequence of thematically organized essays. They first trace the roots of Hilbert's work to the radical transformation of mathematics in the 19th century and bring out his pivotal role in creating mathematical logic and proof theory. They then analyze techniques and results of "classical" proof theory as well as their dramatic expansion in modern proof theory. This intellectual experience finally opens horizons for reflection on the nature of mathematics in the 21st century: Sieg articulates his position of reductive structuralism and explores mathematical capacities via computational models.
The concept of infinity is one of the most important, and at the same time, one of the most mysterious concepts of science. Already in antiquity many philosophers and mathematicians pondered over its contradictory nature. In mathematics, the contradictions connected with infinity intensified after the creation, at the end of the 19th century, of the theory of infinite sets and the subsequent discovery, soon after, of paradoxes in this theory. At the time, many scientists ignored the paradoxes and used set theory extensively in their work, while others subjected set-theoretic methods in mathematics to harsh criticism. The debate intensified when a group of French mathematicians, who wrote under the pseudonym of Nicolas Bourbaki, tried to erect the whole edifice of mathematics on the single notion of a set. Some mathematicians greeted this attempt enthusiastically while others regarded it as an unnecessary formalization, an attempt to tear mathematics away from life-giving practical applications that sustain it. These differences notwithstanding, Bourbaki has had a significant influence on the evolution of mathematics in the twentieth century. In this book we try to tell the reader how the idea of the infinite arose and developed in physics and in mathematics, how the theory of infinite sets was constructed, what paradoxes it has led to, what significant efforts have been made to eliminate the resulting contradictions, and what routes scientists are trying to find that would provide a way out of the many difficulties.
This handbook features essays written by both literary scholars and mathematicians that examine multiple facets of the connections between literature and mathematics. These connections range from mathematics and poetic meter to mathematics and modernism to mathematics as literature. Some chapters focus on a single author, such as mathematics and Ezra Pound, Gertrude Stein, or Charles Dickens, while others consider a mathematical topic common to two or more authors, such as squaring the circle, chaos theory, Newton's calculus, or stochastic processes. With appeal for scholars and students in literature, mathematics, cultural history, and history of mathematics, this important volume aims to introduce the range, fertility, and complexity of the connections between mathematics, literature, and literary theory. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via [link.springer.com|http://link.springer.com/].
This monograph examines the private annotations that Ludwig Wittgenstein made to his copy of G.H. Hardy's classic textbook, A Course of Pure Mathematics. Complete with actual images of the annotations, it gives readers a more complete picture of Wittgenstein's remarks on irrational numbers, which have only been published in an excerpted form and, as a result, have often been unjustly criticized. The authors first establish the context behind the annotations and discuss the historical role of Hardy's textbook. They then go on to outline Wittgenstein's non-extensionalist point of view on real numbers, assessing his manuscripts and published remarks and discussing attitudes in play in the philosophy of mathematics since Dedekind. Next, coverage focuses on the annotations themselves. The discussion encompasses irrational numbers, the law of excluded middle in mathematics and the notion of an "improper picture," the continuum of real numbers, and Wittgenstein's attitude toward functions and limits.
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
One main interest of philosophy is to become clear about the assumptions, premisses and inconsistencies of our thoughts and theories. And even for a formal language like mathematics it is controversial if consistency is acheivable or necessary like the articles in the firt part of the publication show. Also the role of formal derivations, the role of the concept of apriority, and the intuitions of mathematical principles and properties need to be discussed. The second part is a contribution on nominalistic and platonistic views in mathematics, like the "indispensability argument" of W. v. O. Quine H. Putnam and the "makes no difference argument" of A. Baker. Not only in retrospect, the third part shows the problems of Mill, Frege's and the unity of mathematics and Descartes's contradictional conception of mathematical essences. Together, these articles give us a hint into the relationship between mathematics and world, that is, one of the central problems in philosophy of mathematics and philosophy of science.
How does Russell's realist conception of the proposition and its
constituents inform the techniques for analysis which he adopted in
mathematics? Jolen Galaugher's book sheds light on this perplexing
issue. In this book, Galaugher provides a detailed treatment of
Russell's early conception of analysis in the light of the
philosophical doctrines to which it answered, and the demands
imposed by existing mathematics on his early logicist program. She
ties together the philosophical commitments which occasioned
Russell's break with idealism and the problems which guided his
selection of technical apparatus in his embrace of logicism. The
result is a detailed synthesis of the primary materials from the
emergence of Russell's realism in 1898 to his landmark theory of
descriptions in 1905. Galaugher's broad thesis is that although
Russell adopted increasingly refined techniques by which to carry
out his logical analyses and avoid the Contradiction, the most
crucial aspects of his philosophical conception of logical analysis
were retained.
This book examines the birth of the scientific understanding of motion. It investigates which logical tools and methodological principles had to be in place to give a consistent account of motion, and which mathematical notions were introduced to gain control over conceptual problems of motion. It shows how the idea of motion raised two fundamental problems in the 5th and 4th century BCE: bringing together being and non-being, and bringing together time and space. The first problem leads to the exclusion of motion from the realm of rational investigation in Parmenides, the second to Zeno's paradoxes of motion. Methodological and logical developments reacting to these puzzles are shown to be present implicitly in the atomists, and explicitly in Plato who also employs mathematical structures to make motion intelligible. With Aristotle we finally see the first outline of the fundamental framework with which we conceptualise motion today.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects. |
You may like...
The Scientific Counter-Revolution - The…
Michael John Gorman
Hardcover
R3,307
Discovery Miles 33 070
Mathematics, Logic, and their…
Mojtaba Mojtahedi, Shahid Rahman, …
Hardcover
R3,359
Discovery Miles 33 590
Knowledge, Number and Reality…
Nils Kurbis, Bahram Assadian, …
Hardcover
R2,981
Discovery Miles 29 810
What is a Mathematical Concept?
Elizabeth De Freitas, Nathalie Sinclair, …
Hardcover
R2,538
Discovery Miles 25 380
|