Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
This book presents Goedel's incompleteness theorems and the other limitative results which are most significant for the philosophy of mathematics. Results are stated in the form most relevant for use in the philosophy of mathematics. An appendix considers their implications for Hilbert's Program for the foundations of mathematics. The text is self-contained, all notions being explained in full detail, but of course previous exposure to the very first rudiments of mathematical logic will help.
1) Written by renowned astrophysicist Jayant Narlikar (known for Hoyle-Narlikar theory of Gravity) this book provides the journey of science and mathematics for general readers. 2) This book relates to the mutual help and cooperation that links science and mathematics. 3) This book will be of interest to departments of philosophy and South Asian studies across UK.
1) Written by renowned astrophysicist Jayant Narlikar (known for Hoyle-Narlikar theory of Gravity) this book provides the journey of science and mathematics for general readers. 2) This book relates to the mutual help and cooperation that links science and mathematics. 3) This book will be of interest to departments of philosophy and South Asian studies across UK.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
This book offers a plurality of perspectives on the historical origins of logicism and on contemporary developments of logicist insights in philosophy of mathematics. It uniquely provides up-to-date research and novel interpretations on a variety of intertwined themes and historical figures related to different versions of logicism. The essays, written by prominent scholars, are divided into three thematic sections. Part I focuses on major authors like Frege, Dedekind, and Russell, providing a historical and theoretical exploration of such figures in the philosophical and mathematical milieu in which logicist views were first expounded. Part II sheds new light on the interconnections between these founding figures and a number of influential other traditions, represented by authors like Hilbert, Husserl, and Peano, as well as on the reconsideration of logicism by Carnap and the logical empiricists. Finally, Part III assesses the legacy of such authors and of logicist themes for contemporary philosophy of mathematics, offering new perspectives on highly debated topics-neo-logicism and its extension to accounts of ordinal numbers and set-theory, the comparison between neo-Fregean and neo-Dedekindian varieties of logicism, and the relation between logicist foundational issues and empirical research on numerical cognition-which define the prospects of logicism in the years to come. This book offers a comprehensive account of the development of logicism and its contemporary relevance for the logico-philosophical foundations of mathematics. It will be of interest to graduate students and researchers working in philosophy of mathematics, philosophy of logic, and the history of analytic philosophy.
This book investigates the process of care in mathematics teaching. The author proposes transformative educational spaces in which learning mathematics, rather than consisting of a repetitive grind of exercises and facts, can become a part of learner identity. This book describes examples of mathematics teachings in a wide range of contexts and pedagogies, coordinated to identify common features where care for mathematical learning and thinking is combined with care for learners. Along with detailing caring mathematics education practices in alternative spaces, the author demonstrates similar practices alive even with the current mainstream spaces of acquisition and performance. Care is integrated through listening, and developing responsive and trusting relationships. It will be of interest to scholars of mathematics education, as well as pre-service and in-service teachers and teacher educators.
* This is a textbook on philosophy of mathematics from the point of view of a mathematician, aimed to attract mathematicians into foundational and philosophical problems in mathematics and help them learn how and to what extent a philosophical view can change the mathematical practice. * It contains up to date and current book available. * The text will appeal to both mathematicians and philosophy departments where Philosophy of Mathematics or Philosophy of Science is taught.
* This is a textbook on philosophy of mathematics from the point of view of a mathematician, aimed to attract mathematicians into foundational and philosophical problems in mathematics and help them learn how and to what extent a philosophical view can change the mathematical practice. * It contains up to date and current book available. * The text will appeal to both mathematicians and philosophy departments where Philosophy of Mathematics or Philosophy of Science is taught.
This book gathers the proceedings of the conference "Cultures of Mathematics and Logic," held in Guangzhou, China. The event was the third in a series of interdisciplinary, international conferences emphasizing the cultural components of philosophy of mathematics and logic. It brought together researchers from many disciplines whose work sheds new light on the diversity of mathematical and logical cultures and practices. In this context, the cultural diversity can be diachronical (different cultures in different historical periods), geographical (different cultures in different regions), or sociological in nature.
This collection addresses metaphysical issues at the intersection between philosophy and science. A unique feature is the way in which it is guided both by history of philosophy, by interaction between philosophy and science, and by methodological awareness. In asking how metaphysics is possible in an age of science, the contributors draw on philosophical tools provided by three great thinkers who were fully conversant with and actively engaged with the sciences of their day: Kant, Husserl, and Frege. Part I sets out frameworks for scientifically informed metaphysics in accordance with the meta-metaphysics outlined by these three self-reflective philosophers. Part II explores the domain for co-existent metaphysics and science. Constraints on ambitious critical metaphysics are laid down in close consideration of logic, meta-theory, and specific conditions for science. Part III exemplifies the role of language and science in contemporary metaphysics. Quine's pursuit of truth is analysed; Cantor's absolute infinitude is reconstrued in modal terms; and sense is made of Weyl's take on the relationship between mathematics and empirical aspects of physics. With chapters by leading scholars, Metametaphysics and the Sciences is an in-depth resource for researchers and advanced students working within metaphysics, philosophy of science, and the history of philosophy.
The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market - nearly every major perspective in the field is represented. The Companion's 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.
Ludwig Wittgenstein's brief Tractatus Logico-Philosophicus (1922) is one of the most important philosophical works of the twentieth century, yet it offers little orientation for the reader. The first-time reader is left wondering what it could be about, and the scholar is left with little guidance for interpretation. In Tractatus in Context, James C. Klagge presents the vital background necessary for appreciating Wittgenstein's gnomic masterpiece. Tractatus in Context contains the early reactions to the Tractatus, including the initial reviews written in 1922-1924. And while we can't talk with Wittgenstein, we can do the next best thing-hear what he had to say about the Tractatus. Klagge thus presents what Wittgenstein thought about germane issues leading up to his writing the book, in discussions and correspondence with others about his ideas, and what he had to say about the Tractatus after it was written-in letters, lectures and conversations. It offers, you might say, Wittgenstein's own commentary on the book. Key Features: Illuminates what is at stake in the Tractatus, by providing the views of others that engaged Wittgenstein as he was writing it. Includes Wittgenstein's earlier thoughts on ideas in the book as recorded in his notebooks, letters, and conversations as well as his later, retrospective comments on those ideas. Draws on new or little-known sources, such as Wittgenstein's coded notebooks, Hermine's notes, Frege's letters, Hansel's diary, Ramsey's notes, and Skinner's dictations. Draws connections between the background context and specific passages in the Tractatus, using a proposition-by-proposition commentary.
Features Provides an accessible introduction to mathematics in art Supports the narrative with a self-contained mathematical theory, with complete proofs of the main results (including the classification theorem for similarities) Presents hundreds of figures, illustrations, computer-generated graphics, designs, photographs, and art reproductions, mainly presented in full color Includes 21 projects and about 280 exercises, about half of which are fully solved Covers Euclidean geometry, golden section, Fibonacci numbers, symmetries, tilings, similarities, fractals, cellular automata, inversion, hyperbolic geometry, perspective drawing, Platonic and Archimedean solids, and topology New to the Second Edition New exercises, projects and artworks Revised, reorganised and expanded chapters More use of color throughout
This book is an outgrowth of a collection of sixty-two problems offered in the The American Mathematical Monthly (AMM) the author has worked over the last two decades. Each selected problem has a central theme, contains gems of sophisticated ideas connected to important current research, and opens new vistas in the understanding of mathematics. The AMM problem section provides one of the most challenging and interesting problem sections among the various journals and online sources currently available. The published problems and solutions have become a treasure trove rife with mathematical gems. The author presents either his published solution in the AMM or an alternative solution to the published one to present and develop problem-solving techniques. A rich glossary of important theorems and formulas is included for easy reference. The reader may regard this book as a starter set for AMM problems, providing a jumping of point to new ideas, and extending their personal lexicon of problems and solutions. This collection is intended to encourage the reader to move away from routine exercises toward creative solutions, as well as offering the reader a systematic illustration of how to organize the transition from problem solving to exploring, investigating and discovering new results.
This book is an outgrowth of a collection of sixty-two problems offered in the The American Mathematical Monthly (AMM) the author has worked over the last two decades. Each selected problem has a central theme, contains gems of sophisticated ideas connected to important current research, and opens new vistas in the understanding of mathematics. The AMM problem section provides one of the most challenging and interesting problem sections among the various journals and online sources currently available. The published problems and solutions have become a treasure trove rife with mathematical gems. The author presents either his published solution in the AMM or an alternative solution to the published one to present and develop problem-solving techniques. A rich glossary of important theorems and formulas is included for easy reference. The reader may regard this book as a starter set for AMM problems, providing a jumping of point to new ideas, and extending their personal lexicon of problems and solutions. This collection is intended to encourage the reader to move away from routine exercises toward creative solutions, as well as offering the reader a systematic illustration of how to organize the transition from problem solving to exploring, investigating and discovering new results.
This volume tells the story of the legacy and impact of the great German polymath Gottfried Wilhelm Leibniz (1646-1716). Leibniz made significant contributions to many areas, including philosophy, mathematics, political and social theory, theology, and various sciences. The essays in this volume explores the effects of Leibniz's profound insights on subsequent generations of thinkers by tracing the ways in which his ideas have been defended and developed in the three centuries since his death. Each of the 11 essays is concerned with Leibniz's legacy and impact in a particular area, and between them they show not just the depth of Leibniz's talents but also the extent to which he shaped the various domains to which he contributed, and in some cases continues to shape them today. With essays written by experts such as Nicholas Jolley, Pauline Phemister, and Philip Beeley, this volume is essential reading not just for students of Leibniz but also for those who wish to understand the game-changing impact made by one of history's true universal geniuses.
This edited collection is the first of its kind to explore the view called perspectivism in philosophy of science. The book brings together an array of essays that reflect on the methodological promises and scientific challenges of perspectivism in a variety of fields such as physics, biology, cognitive neuroscience, and cancer research, just as a few examples. What are the advantages of using a plurality of perspectives in a given scientific field and for interdisciplinary research? Can different perspectives be integrated? What is the relation between perspectivism, pluralism, and pragmatism? These ten new essays by top scholars in the field offer a polyphonic journey towards understanding the view called 'perspectivism' and its relevance to science.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
Bayesian ideas have recently been applied across such diverse fields as philosophy, statistics, economics, psychology, artificial intelligence, and legal theory. Fundamentals of Bayesian Epistemology examines epistemologists' use of Bayesian probability mathematics to represent degrees of belief. Michael G. Titelbaum provides an accessible introduction to the key concepts and principles of the Bayesian formalism, enabling the reader both to follow epistemological debates and to see broader implications Volume 1 begins by motivating the use of degrees of belief in epistemology. It then introduces, explains, and applies the five core Bayesian normative rules: Kolmogorov's three probability axioms, the Ratio Formula for conditional degrees of belief, and Conditionalization for updating attitudes over time. Finally, it discusses further normative rules (such as the Principal Principle, or indifference principles) that have been proposed to supplement or replace the core five. Volume 2 gives arguments for the five core rules introduced in Volume 1, then considers challenges to Bayesian epistemology. It begins by detailing Bayesianism's successful applications to confirmation and decision theory. Then it describes three types of arguments for Bayesian rules, based on representation theorems, Dutch Books, and accuracy measures. Finally, it takes on objections to the Bayesian approach and alternative formalisms, including the statistical approaches of frequentism and likelihoodism.
Originally published in 1967. An introduction to the literature of nonstandard logic, in particular to those nonstandard logics known as many-valued logics. Part I expounds and discusses implicational calculi, modal logics and many-valued logics and their associated calculi. Part II considers the detailed development of various many-valued calculi, and some of the important metathereoms which have been proved for them. Applications of the calculi to problems in the philosophy are also surveyed. This work combines criticism with exposition to form a comprehensive but concise survey of the field.
Originally published in 1966. An introduction to current studies of kinds of inference in which validity cannot be determined by ordinary deductive models. In particular, inductive inference, predictive inference, statistical inference, and decision making are examined in some detail. The last chapter discusses the relationship of these forms of inference to philosophical notions of rationality. Special features of the monograph include a discussion of the legitimacy of various criteria for successful predictive inference, the development of an intuitive model which exhibits the difficulties of choosing probability measures over infinite sets, and a comparison of rival views on the foundations of probability in terms of the amount of information which the members of these schools believe suitable for fruitful formalization. The bibliographies include articles by statisticians accessible to students of symbolic logic.
This book addresses the argument in the history of the philosophy of science between the positivists and the anti-positivists. The author starts from a point of firm conviction that all science and philosophy must start with the given... But that the range of the given is not definite. He begins with an examination of science from the outside and then the inside, explaining his position on metaphysics and attempts to formulate the character of operational acts before a general theory of symbolism is explored. The last five chapters constitute a treatise to show that the development from one stage of symbolismto the next is inevitable, consequently that explanatory science represents the culmination of knowledge.
Originally published in 1973. This book presents a valid mode of reasoning that is different to mathematical probability. This inductive logic is investigated in terms of scientific investigation. The author presents his criteria of adequacy for analysing inductive support for hypotheses and discusses each of these criteria in depth. The chapters cover philosophical problems and paradoxes about experimental support, probability and justifiability, ending with a system of logical syntax of induction. Each section begins with a summary of its contents and there is a glossary of technical terms to aid the reader.
Originally published in 1964. This book is concerned with general arguments, by which is meant broadly arguments that rely for their force on the ideas expressed by all, every, any, some, none and other kindred words or phrases. A main object of quantificational logic is to provide methods for evaluating general arguments. To evaluate a general argument by these methods we must first express it in a standard form. Quantificational form is dealt with in chapter one and in part of chapter three; in the remainder of the book an account is given of methods by which arguments when formulated quantificationally may be tested for validity or invalidity. Some attention is also paid to the logic of identity and of definite descriptions. Throughout the book an attempt has been made to give a clear explanation of the concepts involved and the symbols used; in particular a step-by-step and partly mechanical method is developed for translating complicated statements of ordinary discourse into the appropriate quantificational formulae. Some elementary knowledge of truth-functional logic is presupposed.
Recursive Functions and Metamathematics deals with problems of the completeness and decidability of theories, using as its main tool the theory of recursive functions. This theory is first introduced and discussed. Then G del's incompleteness theorems are presented, together with generalizations, strengthenings, and the decidability theory. The book also considers the historical and philosophical context of these issues and their philosophical and methodological consequences. Recent results and trends have been included, such as undecidable sentences of mathematical content, reverse mathematics. All the main results are presented in detail. The book is self-contained and presupposes only some knowledge of elementary mathematical logic. There is an extensive bibliography. Readership: Scholars and advanced students of logic, mathematics, philosophy of science. |
You may like...
Research in History and Philosophy of…
Maria Zack, Dirk Schlimm
Hardcover
R2,817
Discovery Miles 28 170
Mathematics, Logic, and their…
Mojtaba Mojtahedi, Shahid Rahman, …
Hardcover
R3,359
Discovery Miles 33 590
Knowledge, Number and Reality…
Nils Kurbis, Bahram Assadian, …
Hardcover
R2,981
Discovery Miles 29 810
|