![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Kurt Godel (1906-1978) was an Austrian-American mathematician, who is best known for his incompleteness theorems. He was the greatest mathematical logician of the 20th century, with his contributions extending to Einstein's general relativity, as he proved that Einstein's theory allows for time machines. The Godel incompleteness theorem - the usual formal mathematical systems cannot prove nor disprove all true mathematical sentences - is frequently presented in textbooks as something that happens in the rarefied realms of mathematical logic, and that has nothing to do with the real world. Practice shows the contrary though; one can demonstrate the validity of the phenomenon in various areas, ranging from chaos theory and physics to economics and even ecology. In this lively treatise, based on Chaitin's groundbreaking work and on the da Costa-Doria results in physics, ecology, economics and computer science, the authors show that the Godel incompleteness phenomenon can directly bear on the practice of science and perhaps on our everyday life.This accessible book gives a new, detailed and elementary explanation of the Godel incompleteness theorems and presents the Chaitin results and their relation to the da Costa-Doria results, which are given in full, but with no technicalities. Besides theory, the historical report and personal stories about the main character and on this book's writing process, make it appealing leisure reading for those interested in mathematics, logic, physics, philosophy and computer sciences. See also: http://www.youtube.com/watch?v=REy9noY5Sg8
In Alan Lightman's new book, a verse narrative, we meet a man who has lost his faith in all things following a mysterious personal tragedy. After decades of living "hung like a dried fly," emptied and haunted by his past, the narrator awakens one morning revitalized and begins a Dante-like journey to find something to believe in, first turning to the world of science and then to the world of philosophy, religion, and human life. As his personal story is slowly revealed, little by little, we confront the great questions of the cosmos and of the human heart, some questions with answers and others without.
Phanes (fa-nays) means "manifester" or "revealer", and is related to the Greek words "light" and "to shine forth". Phanes Press was founded in 1985 to publish quality books on the spiritual, philosophical, and cosmological traditions of the Western world. Since that time, we have published 45 books, including five volumes of Alexandria, a book-length journal of cosmology, philosophy, myth, and culture. The year 2000 marks our fifteen-year anniversary, and we are working to bring out more interdisciplinary works, including books on creativity, psychology, literature, and the intersections between science, spirituality, and culture. The longest work on number symbolism to survive from the ancient world. Contains helpful footnotes, an extensive glossary, bibliography, & foreword by Keith Critchlow.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
Theory of Conics, Geometrical Constructions and Practical Geometry: A History of Arabic Sciences and Mathematics Volume 3, provides a unique primary source on the history and philosophy of mathematics and science from the mediaeval Arab world. The present text is complemented by two preceding volumes of A History of Arabic Sciences and Mathematics, which focused on founding figures and commentators in the ninth and tenth centuries, and the historical and epistemological development of 'infinitesimal mathematics' as it became clearly articulated in the oeuvre of Ibn al-Haytham. This volume examines the increasing tendency, after the ninth century, to explain mathematical problems inherited from Greek times using the theory of conics. Roshdi Rashed argues that Ibn al-Haytham completes the transformation of this 'area of activity,' into a part of geometry concerned with geometrical constructions, dealing not only with the metrical properties of conic sections but with ways of drawing them and properties of their position and shape. Including extensive commentary from one of world's foremost authorities on the subject, this book contributes a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context. This fundamental text will appeal to historians of ideas, epistemologists and mathematicians at the most advanced levels of research.
This book is a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics. The book is divided into three parts. Part I, Reason, Science, and Mathematics contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay of phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope Maddy and Roger Penrose. Part III deals with elementary, constructive areas of mathematics. These are areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincave and Frege.
First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more general method of approach called substantial factualism which the author asserts allows for the development of a more comprehensive philosophical position by not trivialising or distorting substantial facts of human knowledge.
Not all scientific explanations work by describing causal connections between events or the world's overall causal structure. Some mathematical proofs explain why the theorems being proved hold. In this book, Marc Lange proposes philosophical accounts of many kinds of non-causal explanations in science and mathematics. These topics have been unjustly neglected in the philosophy of science and mathematics. One important kind of non-causal scientific explanation is termed explanation by constraint. These explanations work by providing information about what makes certain facts especially inevitable - more necessary than the ordinary laws of nature connecting causes to their effects. Facts explained in this way transcend the hurly-burly of cause and effect. Many physicists have regarded the laws of kinematics, the great conservation laws, the coordinate transformations, and the parallelogram of forces as having explanations by constraint. This book presents an original account of explanations by constraint, concentrating on a variety of examples from classical physics and special relativity. This book also offers original accounts of several other varieties of non-causal scientific explanation. Dimensional explanations work by showing how some law of nature arises merely from the dimensional relations among the quantities involved. Really statistical explanations include explanations that appeal to regression toward the mean and other canonical manifestations of chance. Lange provides an original account of what makes certain mathematical proofs but not others explain what they prove. Mathematical explanation connects to a host of other important mathematical ideas, including coincidences in mathematics, the significance of giving multiple proofs of the same result, and natural properties in mathematics. Introducing many examples drawn from actual science and mathematics, with extended discussions of examples from Lagrange, Desargues, Thomson, Sylvester, Maxwell, Rayleigh, Einstein, and Feynman, Because Without Cause's proposals and examples should set the agenda for future work on non-causal explanation.
There is a long tradition, in the history and philosophy of science, of studying Kant's philosophy of mathematics, but recently philosophers have begun to examine the way in which Kant's reflections on mathematics play a role in his philosophy more generally, and in its development. For example, in the Critique of Pure Reason, Kant outlines the method of philosophy in general by contrasting it with the method of mathematics; in the Critique of Practical Reason, Kant compares the Formula of Universal Law, central to his theory of moral judgement, to a mathematical postulate; in the Critique of Judgement, where he considers aesthetic judgment, Kant distinguishes the mathematical sublime from the dynamical sublime. This last point rests on the distinction that shapes the Transcendental Analytic of Concepts at the heart of Kant's Critical philosophy, that between the mathematical and the dynamical categories. These examples make it clear that Kant's transcendental philosophy is strongly influenced by the importance and special status of mathematics. The contributions to this book explore this theme of the centrality of mathematics to Kant's philosophy as a whole. This book was originally published as a special issue of the Canadian Journal of Philosophy.
Emily Grosholz offers an original investigation of demonstration in
mathematics and science, examining how it works and why it is
persuasive. Focusing on geometrical demonstration, she shows the
roles that representation and ambiguity play in mathematical
discovery. She presents a wide range of case studies in mechanics,
topology, algebra, logic, and chemistry, from ancient Greece to the
present day, but focusing particularly on the seventeenth and
twentieth centuries. She argues that reductive methods are
effective not because they diminish but because they multiply and
juxtapose modes of representation. Such problem-solving is, she
argues, best understood in terms of Leibnizian "analysis"--the
search for conditions of intelligibility. Discovery and
justification are then two aspects of one rational way of
proceeding, which produces the mathematician's formal experience.
Twentieth-century China has been caught between a desire to increase its wealth and power in line with other advanced nations, which, by implication, means copying their institutions, practices and values, whilst simultaneously seeking to preserve China's independence and historically formed identity. Over time, Chinese philosophers, writers, artists and politicians have all sought to reconcile these goals and this book shows how this search for a Chinese way penetrated even the most central, least contested area of modernity: science. Reviving Ancient Chinese Mathematics is a study of the life of one of modern China's most admired scientific figures, the mathematician Wu Wen-Tsun. Negotiating the conflict between progress and tradition, he found a path that not only ensured his political and personal survival, but which also brought him renown as a mathematician of international status who claimed that he stood outside the dominant western tradition of mathematics. Wu Wen-Tsun's story highlights crucial developments and contradictions in twentieth -century China, the significance of which extends far beyond the field of mathematics. On one hand lies the appeal of radical scientific modernity, "mechanisation" in all its forms, and competitiveness within the international scientific community. On the other is an anxiety to preserve national traditions and make them part of the modernisation project. Moreover, Wu's intellectual development also reflects the complex relationship between science and Maoist ideology, because his turn to history was powered by his internalisation of certain aspects of Maoist ideology, including its utilitarian philosophy of science. This book traces how Wu managed to combine political success and international scientific eminence, a story that has wider implications for a new century of increasing Chinese activity in the sciences. As such, it will be of great interest to students and scholars of Chinese history, the history of science and the history and philosophy of mathematics.
This collection presents the first sustained examination of the nature and status of the idea of principles in early modern thought. Principles are almost ubiquitous in the seventeenth and eighteenth centuries: the term appears in famous book titles, such as Newton's Principia; the notion plays a central role in the thought of many leading philosophers, such as Leibniz's Principle of Sufficient Reason; and many of the great discoveries of the period, such as the Law of Gravitational Attraction, were described as principles. Ranging from mathematics and law to chemistry, from natural and moral philosophy to natural theology, and covering some of the leading thinkers of the period, this volume presents ten compelling new essays that illustrate the centrality and importance of the idea of principles in early modern thought. It contains chapters by leading scholars in the field, including the Leibniz scholar Daniel Garber and the historian of chemistry William R. Newman, as well as exciting, emerging scholars, such as the Newton scholar Kirsten Walsh and a leading expert on experimental philosophy, Alberto Vanzo. The Idea of Principles in Early Modern Thought: Interdisciplinary Perspectives charts the terrain of one of the period's central concepts for the first time, and opens up new lines for further research.
The Quantum of Explanation advances a bold new theory of how explanation ought to be understood in philosophical and cosmological inquiries. Using a complete interpretation of Alfred North Whitehead's philosophical and mathematical writings and an interpretive structure that is essentially new, Auxier and Herstein argue that Whitehead has never been properly understood, nor has the depth and breadth of his contribution to the human search for knowledge been assimilated by his successors. This important book effectively applies Whitehead's philosophy to problems in the interpretation of science, empirical knowledge, and nature. It develops a new account of philosophical naturalism that will contribute to the current naturalism debate in both Analytic and Continental philosophy. Auxier and Herstein also draw attention to some of the most important differences between the process theology tradition and Whitehead's thought, arguing in favor of a Whiteheadian naturalism that is more or less independent of theological concerns. This book offers a clear and comprehensive introduction to Whitehead's philosophy and is an essential resource for students and scholars interested in American philosophy, the philosophy of mathematics and physics, and issues associated with naturalism, explanation and radical empiricism.
Think of a number, any number, or properties like fragility and humanity. These and other abstract entities are radically different from concrete entities like electrons and elbows. While concrete entities are located in space and time, have causes and effects, and are known through empirical means, abstract entities like meanings and possibilities are remarkably different. They seem to be immutable and imperceptible and to exist "outside" of space and time. This book provides a comprehensive critical assessment of the problems raised by abstract entities and the debates about existence, truth, and knowledge that surround them. It sets out the key issues that inform the metaphysical disagreement between platonists who accept abstract entities and nominalists who deny abstract entities exist. Beginning with the essentials of the platonist-nominalist debate, it explores the key arguments and issues informing the contemporary debate over abstract reality: arguments for platonism and their connections to semantics, science, and metaphysical explanation the abstract-concrete distinction and views about the nature of abstract reality epistemological puzzles surrounding our knowledge of mathematical entities and other abstract entities. arguments for nominalism premised upon concerns about paradox, parsimony, infinite regresses, underdetermination, and causal isolation nominalist options that seek to dispense with abstract entities. Including chapter summaries, annotated further reading, and a glossary, Abstract Entities is essential reading for anyone seeking a clear and authoritative introduction to the problems raised by abstract entities.
How can we identify events due to intelligent causes and distinguish them from events due to undirected natural causes? If we lack a causal theory how can we determine whether an intelligent cause acted? This book presents a reliable method for detecting intelligent causes: the design inference. The design inference uncovers intelligent causes by isolating the key trademark of intelligent causes: specified events of small probability. Design inferences can be found in a range of scientific pursuits from forensic science to research into the origins of life to the search for extraterrestrial intelligence. This challenging and provocative book will be read with particular interest by philosophers of science and religion, other philosophers concerned with epistemology and logic, probability and complexity theorists, and statisticians.
This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes' set theoretical predicates and the "da Costa and Chuaqui" approach. This book engages with important discussions of the nature of scientific theories and will be a useful resource for researchers and upper-level students working in philosophy of science.
George Spencer Brown, a polymath and author of Laws of Form, brought together mathematics, electronics, engineering and philosophy to form an unlikely bond. This book investigates Design with NOR, the title of the yet unpublished 1961 typescript by Spencer Brown. The typescript formed through the author's experiences as technical engineer and developer of a new form of switching algebra for Mullard Equipment Ltd., a British manufacturer of electronic components, and is published here for the first time. Related essays contextualise the typescript drawing on a variety backgrounds from mathematics and engineering to philosophy and sociology, and thus invite readers to a reverse-engineering of both the form and its laws.
The Philosophy of Mathematics Today gives a panorama of the best current work in this lively field, through twenty essays specially written for this collection by leading figures. The topics include indeterminacy, logical consequence, mathematical methodology, abstraction, and both Hilbert's and Frege's foundational programmes. The collection will be an important source for research in the philosophy of mathematics for years to come. Contributors Paul Benacerraf, George Boolos, John P. Burgess, Charles S. Chihara, Michael Detlefsen, Michael Dummett, Hartry Field, Kit Fine, Bob Hale, Richard G. Heck, Jnr., Geoffrey Hellman, Penelope Maddy, Karl-Georg Niebergall, Charles D. Parsons, Michael D. Resnik, Matthias Schirn, Stewart Shapiro, Peter Simons, W.W. Tait, Crispin Wright.
The twentieth century witnessed the birth of analytic philosophy. This volume covers some of its key movements and philosophers, including Frege and Wittgenstein's Tractatus.
First published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.
This book explores an important central thread that unifies Russell's thoughts on logic in two works previously considered at odds with each other, the Principles of Mathematics and the later Principia Mathematica. This thread is Russell's doctrine that logic is an absolutely general science and that any calculus for it must embrace wholly unrestricted variables. The heart of Landini's book is a careful analysis of Russell's largely unpublished "substitutional" theory. On Landini's showing, the substitutional theory reveals the unity of Russell's philosophy of logic and offers new avenues for a genuine solution of the paradoxes plaguing Logicism.
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fifth volume consists of material from correspondents from H-Z.
The development of mathematical competence -- both by humans as a species over millennia and by individuals over their lifetimes -- is a fascinating aspect of human cognition. This book explores when and why the rudiments of mathematical capability first appeared among human beings, what its fundamental concepts are, and how and why it has grown into the richly branching complex of specialties that it is today. It discusses whether the 'truths' of mathematics are discoveries or inventions, and what prompts the emergence of concepts that appear to be descriptive of nothing in human experience. Also covered is the role of esthetics in mathematics: What exactly are mathematicians seeing when they describe a mathematical entity as 'beautiful'? There is discussion of whether mathematical disability is distinguishable from a general cognitive deficit and whether the potential for mathematical reasoning is best developed through instruction. This volume is unique in the vast range of psychological questions it covers, as revealed in the work habits and products of numerous mathematicians. It provides fascinating reading for researchers and students with an interest in cognition in general and mathematical cognition in particular. Instructors of mathematics will also find the book's insights illuminating.
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fourth volume consists of material from correspondents from A-G.
There is a long tradition, in the history and philosophy of science, of studying Kant's philosophy of mathematics, but recently philosophers have begun to examine the way in which Kant's reflections on mathematics play a role in his philosophy more generally, and in its development. For example, in the Critique of Pure Reason, Kant outlines the method of philosophy in general by contrasting it with the method of mathematics; in the Critique of Practical Reason, Kant compares the Formula of Universal Law, central to his theory of moral judgement, to a mathematical postulate; in the Critique of Judgement, where he considers aesthetic judgment, Kant distinguishes the mathematical sublime from the dynamical sublime. This last point rests on the distinction that shapes the Transcendental Analytic of Concepts at the heart of Kant's Critical philosophy, that between the mathematical and the dynamical categories. These examples make it clear that Kant's transcendental philosophy is strongly influenced by the importance and special status of mathematics. The contributions to this book explore this theme of the centrality of mathematics to Kant's philosophy as a whole. This book was originally published as a special issue of the Canadian Journal of Philosophy. |
![]() ![]() You may like...
Explanation in Ethics and Mathematics…
Uri D. Leibowitz, Neil Sinclair
Hardcover
R2,900
Discovery Miles 29 000
Abstractionism - Essays in Philosophy of…
Philip A. Ebert, Marcus Rossberg
Hardcover
R3,391
Discovery Miles 33 910
|