![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
With this seventh volume, as part of the series of yearbooks by the Association of Mathematics Educators in Singapore, we aim to provide a range of learning experiences and teaching strategies that mathematics teachers can judiciously select and adapt in order to deliver effective lessons to their students at the primary to secondary level. Our ultimate goal is to develop successful problem solvers who are able to understand concepts, master fundamental skills, reason logically, apply mathematics, enjoy learning, and strategise their thinking. These qualities will prepare students for life-long learning and careers in the 21st century.The materials covered are derived from psychological theories, education praxis, research findings, and mathematics discourse, mediated by the author's professional experiences in mathematics education in four countries over the past four decades. They are organised into ten chapters aligned with the Singapore mathematics curriculum framework to help teachers and educators from Singapore and other countries deepen their understanding about the so-called 'Singapore Maths'.The book strikes a balance between mathematical rigour and pedagogical diversity, without rigid adherence to either. This is relevant to the current discussion about the relative roles of mathematics content knowledge and pedagogical content knowledge in effective teaching. It also encourages teachers to develop their own philosophy and teaching styles so that their lessons are effective, efficient, and enjoyable to teach.
Berto's highly readable and lucid guide introduces students and the interested reader to Godel's celebrated "Incompleteness Theorem," and discusses some of the most famous - and infamous - claims arising from Godel's arguments.Offers a clear understanding of this difficult subject by presenting each of the key steps of the "Theorem" in separate chaptersDiscusses interpretations of the "Theorem" made by celebrated contemporary thinkersSheds light on the wider extra-mathematical and philosophical implications of Godel's theoriesWritten in an accessible, non-technical style
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Paradoxes of the Infinite presents one of the most insightful, yet strangely unacknowledged, mathematical treatises of the 19th century: Dr Bernard Bolzano's Paradoxien. This volume contains an adept translation of the work itself by Donald A. Steele S.J., and in addition an historical introduction, which includes a brief biography as well as an evaluation of Bolzano the mathematician, logician and physicist.
Wittgenstein's role was vital in establishing mathematics as one of this century's principal areas of philosophic inquiry. In this book, the three phases of Wittgenstein's reflections on mathematics are viewed as a progressive whole, rather than as separate entities. Frascolla builds up a systematic construction of Wittgenstein's representation of the role of arithmetic in the theory of logical operations. He also presents a new interpretation of Wittgenstein's rule-following considerations - the `community view of internal relations'.
Rarely has the history or philosophy of mathematics been written about by mathematicians, and the analysis of mathematical texts themselves has been an area almost entirely unexplored. Figures of Thought looks at ways in which mathematical works can be read as texts, examines their textual strategies and demonstrates that such readings provide a rich source of philosophical issues regarding mathematics: issues which traditional approaches to the history and philosophy of mathematics have neglected. David Reed, a professional mathematician himself, offers the first sustained and critical attempt to find a consistent argument or narrative thread in mathematical texts. In doing so he develops new and fascinating interpretations of mathematicians' work throughout history, from an in-depth analysis of Euclid's Elements, to the mathematics of Descartes and right up to the work of contemporary mathematicians such as Grothendeick. He also traces the implications of this approach to the understanding of the history and development of mathematics.
This ambitious work puts forward a new account of mathematics-as-language that challenges the coherence of the accepted idea of infinity and suggests a startlingly new conception of counting. The author questions the familiar, classical, interpretation of whole numbers held by mathematicians and scientists, and replaces it with an original and radical alternative-what the author calls non-Euclidean arithmetic. The author's entry point is an attack on the notion of the mathematical infinite in both its potential and actual forms, an attack organized around his claim that any interpretation of "endless" or "unlimited" iteration is ineradicably theological. Going further than critique of the overt metaphysics enshrined in the prevailing Platonist description of mathematics, he uncovers a covert theism, an appeal to a disembodied ghost, deep inside the mathematical community's understanding of counting.
Truth Through Proof defends an anti-platonist philosophy of
mathematics derived from game formalism. Classic formalists claimed
implausibly that mathematical utterances are truth-valueless moves
in a game. Alan Weir aims to develop a more satisfactory successor
to game formalism utilising a widely accepted, broadly neo-Fregean
framework, in which the proposition expressed by an utterance is a
function of both sense and background circumstance. This framework
allows for sentences whose truth-conditions are not
representational, which are made true or false by conditions
residing in the circumstances of utterances but not transparently
in the sense.
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
The book is not an unrestricted survey engaging a vast and repetative literature, but a systematic treatise within clear boundaries, largely a document of Afriat's own work. The original motive of the work is to elaborate a concept of what really is a price index, which, despite some kind of price-level notion having a presence throughout economics, in theory and practice, had been missing.
"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.
This reissue of D. A. Gillies highly influential work, first published in 1973, is a philosophical theory of probability which seeks to develop von Mises' views on the subject. In agreement with von Mises, the author regards probability theory as a mathematical science like mechanics or electrodynamics, and probability as an objective, measurable concept like force, mass or charge. On the other hand, Dr Gillies rejects von Mises' definition of probability in terms of limiting frequency and claims that probability should be taken as a primitive or undefined term in accordance with modern axiomatic approaches. This of course raises the problem of how the abstract calculus of probability should be connected with the 'actual world of experiments'. It is suggested that this link should be established, not by a definition of probability, but by an application of Popper's concept of falsifiability. In addition to formulating his own interesting theory, Dr Gillies gives a detailed criticism of the generally accepted Neyman Pearson theory of testing, as well as of alternative philosophical approaches to probability theory. The reissue will be of interest both to philosophers with no previous knowledge of probability theory and to mathematicians interested in the foundations of probability theory and statistics.
This study addresses a central theme in current philosophy: Platonism vs Naturalism and provides accounts of both approaches to mathematics, crucially discussing Quine, Maddy, Kitcher, Lakoff, Colyvan, and many others. Beginning with accounts of both approaches, Brown defends Platonism by arguing that only a Platonistic approach can account for concept acquisition in a number of special cases in the sciences. He also argues for a particular view of applied mathematics, a view that supports Platonism against Naturalist alternatives. Not only does this engaging book present the Platonist-Naturalist debate over mathematics in a comprehensive fashion, but it also sheds considerable light on non-mathematical aspects of a dispute that is central to contemporary philosophy.
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
The Star and the Whole: Gian-Carlo Rota on Mathematics and Phenomenology, authored by Fabrizio Palombi, is the first book to study Rota's philosophical reflection. Rota (1932-1999) was a leading figure in contemporary mathematics and an outstanding philosopher, inspired by phenomenology, who made fundamental contributions to combinatorial analysis, and trained several generations of mathematicians in his long career at the Massachusetts Institute of Technology (MIT) and the Los Alamos National Laboratory. The first chapter of the book reconstructs Rota's cultural biography and examines his philosophical style, his criticisms of analytical philosophy, and his reflection on Heidegger's thought. The second chapter presents a general picture of Rota's re-elaboration of phenomenology examined in the light of the Husserlian notion of Fundierung. This chapter also illustrates how the star-shape becomes a powerful instrument for understanding the properties of Husserl's mereology and the critique of objectivism. The third chapter is a theoretical reflection on the nature of mathematical entities, and the fourth examines the complex relation of mathematical research with technological applicability and scientific progress. The foreword of the text is written by Robert Sokolowski.
Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level.
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Originally published in 1923 Chance and Error examines the vagaries of chance, and how this is the result of the interference of yes and no. The book basis its examination of chance on the idea of a two-sided coin. The book stipulates that contradictories are head and tail, or yes and no. When the coin is flipped in the air yes normally wins half of the trials, but this includes half of the half that normally go to no. Thus, normally in one quarter of the trials there is an interference of yes and no. From this the chance of any number of heads or tails can be easily calculated, and all results that are attained by more difficult mathematics are secured. The book uses this idea to examine interference of yes and no in everyday life and argues that this causes the variations in everything that goes on around us in nature and in our daily life. This book will be of interest to philosophers of logic, as well as mathematicians.
"Philosophy of Mathematics: An Introduction" provides a critical
analysis of the major philosophical issues and viewpoints in the
concepts and methods of mathematics - from antiquity to the modern
era.
A lively and engaging look at logic puzzles and their role in mathematics, philosophy, and recreation Logic puzzles were first introduced to the public by Lewis Carroll in the late nineteenth century and have been popular ever since. Games like Sudoku and Mastermind are fun and engrossing recreational activities, but they also share deep foundations in mathematical logic and are worthy of serious intellectual inquiry. Games for Your Mind explores the history and future of logic puzzles while enabling you to test your skill against a variety of puzzles yourself. In this informative and entertaining book, Jason Rosenhouse begins by introducing readers to logic and logic puzzles and goes on to reveal the rich history of these puzzles. He shows how Carroll's puzzles presented Aristotelian logic as a game for children, yet also informed his scholarly work on logic. He reveals how another pioneer of logic puzzles, Raymond Smullyan, drew on classic puzzles about liars and truthtellers to illustrate Kurt Goedel's theorems and illuminate profound questions in mathematical logic. Rosenhouse then presents a new vision for the future of logic puzzles based on nonclassical logic, which is used today in computer science and automated reasoning to manipulate large and sometimes contradictory sets of data. Featuring a wealth of sample puzzles ranging from simple to extremely challenging, this lively and engaging book brings together many of the most ingenious puzzles ever devised, including the "Hardest Logic Puzzle Ever," metapuzzles, paradoxes, and the logic puzzles in detective stories.
Berto's highly readable and lucid guide introduces students and the interested reader to Godel's celebrated "Incompleteness Theorem," and discusses some of the most famous - and infamous - claims arising from Godel's arguments.Offers a clear understanding of this difficult subject by presenting each of the key steps of the "Theorem" in separate chaptersDiscusses interpretations of the "Theorem" made by celebrated contemporary thinkersSheds light on the wider extra-mathematical and philosophical implications of Godel's theoriesWritten in an accessible, non-technical style
Maurice Potron (1872-1942), a French Jesuit mathematician, constructed and analyzed a highly original, but virtually unknown economic model. This book presents translated versions of all his economic writings, preceded by a long introduction which sketches his life and environment based on extensive archival research and family documents. Potron had no education in economics and almost no contact with the economists of his time. His primary source of inspiration was the social doctrine of the Church, which had been updated at the end of the nineteenth century. Faced with the 'economic evils' of his time, he reacted by utilizing his talents as a mathematician and an engineer to invent and formalize a general disaggregated model in which production, employment, prices and wages are the main unknowns. He introduced four basic principles or normative conditions ('sufficient production', the 'right to rest', 'justice in exchange', and the 'right to live') to define satisfactory regimes of production and labour on the one hand, and of prices and wages on the other. He studied the conditions for the existence of these regimes, both on the quantity side and the value side, and he explored the way to implement them. This book makes it clear that Potron was the first author to develop a full input-output model, to use the Perron-Frobenius theorem in economics, to state a duality result, and to formulate the Hawkins-Simon condition. These are all techniques which now belong to the standard toolkit of economists. This book will be of interest to Economics postgraduate students and researchers, and will be essential reading for courses dealing with the history of mathematical economics in general, and linear production theory in particular.
Bayesian ideas have recently been applied across such diverse fields as philosophy, statistics, economics, psychology, artificial intelligence, and legal theory. Fundamentals of Bayesian Epistemology examines epistemologists' use of Bayesian probability mathematics to represent degrees of belief. Michael G. Titelbaum provides an accessible introduction to the key concepts and principles of the Bayesian formalism, enabling the reader both to follow epistemological debates and to see broader implications Volume 1 begins by motivating the use of degrees of belief in epistemology. It then introduces, explains, and applies the five core Bayesian normative rules: Kolmogorov's three probability axioms, the Ratio Formula for conditional degrees of belief, and Conditionalization for updating attitudes over time. Finally, it discusses further normative rules (such as the Principal Principle, or indifference principles) that have been proposed to supplement or replace the core five. Volume 2 gives arguments for the five core rules introduced in Volume 1, then considers challenges to Bayesian epistemology. It begins by detailing Bayesianism's successful applications to confirmation and decision theory. Then it describes three types of arguments for Bayesian rules, based on representation theorems, Dutch Books, and accuracy measures. Finally, it takes on objections to the Bayesian approach and alternative formalisms, including the statistical approaches of frequentism and likelihoodism.
The development of mathematical competence -- both by humans as a species over millennia and by individuals over their lifetimes -- is a fascinating aspect of human cognition. This book explores when and why the rudiments of mathematical capability first appeared among human beings, what its fundamental concepts are, and how and why it has grown into the richly branching complex of specialties that it is today. It discusses whether the truths of mathematics are discoveries or inventions, and what prompts the emergence of concepts that appear to be descriptive of nothing in human experience. Also covered is the role of esthetics in mathematics: What exactly are mathematicians seeing when they describe a mathematical entity as beautiful ? There is discussion of whether mathematical disability is distinguishable from a general cognitive deficit and whether the potential for mathematical reasoning is best developed through instruction. This volume is unique in the vast range of psychological questions it covers, as revealed in the work habits and products of numerous mathematicians. It provides fascinating reading for researchers and students with an interest in cognition in general and mathematical cognition in particular. Instructors of mathematics will also find the book s insights illuminating.
Contemporary philosophy of mathematics offers us an embarrassment
of riches. Among the major areas of work one could list
developments of the classical foundational programs, analytic
approaches to epistemology and ontology of mathematics, and
developments at the intersection of history and philosophy of
mathematics. But anyone familiar with contemporary philosophy of
mathematics will be aware of the need for new approaches that pay
closer attention to mathematical practice. This book is the first
attempt to give a coherent and unified presentation of this new
wave of work in philosophy of mathematics. The new approach is
innovative at least in two ways. First, it holds that there are
important novel characteristics of contemporary mathematics that
are just as worthy of philosophical attention as the distinction
between constructive and non-constructive mathematics at the time
of the foundational debates. Secondly, it holds that many topics
which escape purely formal logical treatment--such as
visualization, explanation, and understanding--can nonetheless be
subjected to philosophical analysis. |
![]() ![]() You may like...
Renewable Motor Fuels - The Past, the…
Arthur M. Brownstein
Paperback
Obstacle to Peace - The US Role in the…
Jeremy R. Hammond, Richard (Foreward) Falk, …
Hardcover
R994
Discovery Miles 9 940
Limits to the European Union's Normative…
Rok Zupančič, Nina Pejič
Hardcover
R1,340
Discovery Miles 13 400
Path Planning for Autonomous Vehicle…
Umar Zakir Abdul Hamid, Volkan Sezer, …
Hardcover
R3,322
Discovery Miles 33 220
|