Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.
Think of a number, any number, or properties like fragility and humanity. These and other abstract entities are radically different from concrete entities like electrons and elbows. While concrete entities are located in space and time, have causes and effects, and are known through empirical means, abstract entities like meanings and possibilities are remarkably different. They seem to be immutable and imperceptible and to exist "outside" of space and time. This book provides a comprehensive critical assessment of the problems raised by abstract entities and the debates about existence, truth, and knowledge that surround them. It sets out the key issues that inform the metaphysical disagreement between platonists who accept abstract entities and nominalists who deny abstract entities exist. Beginning with the essentials of the platonist-nominalist debate, it explores the key arguments and issues informing the contemporary debate over abstract reality: arguments for platonism and their connections to semantics, science, and metaphysical explanation the abstract-concrete distinction and views about the nature of abstract reality epistemological puzzles surrounding our knowledge of mathematical entities and other abstract entities. arguments for nominalism premised upon concerns about paradox, parsimony, infinite regresses, underdetermination, and causal isolation nominalist options that seek to dispense with abstract entities. Including chapter summaries, annotated further reading, and a glossary, Abstract Entities is essential reading for anyone seeking a clear and authoritative introduction to the problems raised by abstract entities.
The papers in this volume address fundamental, and interrelated, philosophical issues concerning modality and identity, issues that have not only been pivotal to the development of analytic philosophy in the twentieth century, but remain a key focus of metaphysical debate in the twenty-first. How are we to understand the concepts of necessity and possibility? Is chance a basic ingredient of reality? How are we to make sense of claims about personal identity? Do numbers require distinctive identity criteria? Does the capacity to identify an object presuppose an ability to bring it under a sortal concept? Rather than presenting a single, partisan perspective, Identity and Modality enriches our understanding of identity and modality by bringing together papers written by leading researchers working in metaphysics, the philosophy of mind, the philosophy of science, and the philosophy of mathematics. The resulting variety of perspectives correspondingly reflects both the breadth and depth of contemporary theorizing about identity and modality, each paper addressing a particular issue and advancing our knowledge of the area. This volume will provide essential reading for graduate students in the subject and professional philosophers.
This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.
The Symbolic Universe considers the ways in which many leading mathematicians between 1890 and 1930 attempted to apply geometry to physics. It concentrates on responses to Einstein's theories of special and general relativity, but also considers the philosophical implications of these ideas.
This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world-renowned researchers in the fields of mathematics, physics, cosmology, philosophy and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity.
This collection of specially commissioned essays by leading scholars presents research on Isaac Newton and his main philosophical interlocutors and critics. The essays analyze Newton's relation to his contemporaries, especially Barrow, Descartes, Leibniz and Locke and discuss the ways in which a broad range of figures, including Hume, Maclaurin, Maupertuis and Kant, reacted to his thought. The wide range of topics discussed includes the laws of nature, the notion of force, the relation of mathematics to nature, Newton's argument for universal gravitation, his attitude toward philosophical empiricism, his use of 'fluxions', his approach toward measurement problems and his concept of absolute motion, together with new interpretations of Newton's matter theory. The volume concludes with an extended essay that analyzes the changes in physics wrought by Newton's Principia. A substantial introduction and bibliography provide essential reference guides.
Two features of mathematics stand out: its menagerie of seemingly
eternal objects (numbers, spaces, patterns, functions, categories,
morphisms, graphs, and so on), and the hieroglyphics of special
notations, signs, symbols, and diagrams associated with them. The
author challenges the widespread belief in the extra-human origins
of these objects and the understanding of mathematics as either a
purely mental activity about them or a formal game of manipulating
symbols. Instead, he argues that mathematics is a vast and unique
man-made imagination machine controlled by writing.
 From the Preface: “There are three volumes. The first one contains a curriculum vitae, a «Brève Analyse des Travaux» and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposés 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg... Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation.â€
An important mathematician and astronomer in medieval India, Bhascara Acharya (1114 85) wrote treatises on arithmetic, algebra, geometry and astronomy. He is also believed to have been head of the astronomical observatory at Ujjain, which was the leading centre of mathematical sciences in India. Forming part of his Sanskrit magnum opus Siddh nta Shiromani, the present work is his treatise on algebra. It was first published in English in 1813 after being translated from a Persian text by the East India Company civil servant Edward Strachey (1774 1832). The topics covered include operations involving positive and negative numbers, surds and zero, as well as algebraic, simultaneous and indeterminate equations. Strachey also appends useful notes made by the orientalist Samuel Davis (1760 1819). Of enduring interest in the history of mathematics, this was notably the first work to acknowledge that a positive number has two square roots.
From the Preface: "There are three volumes. The first one contains a curriculum vitae, a "Breve Analyse des Travaux" and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposes 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg...Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation."
From the Preface: "There are three volumes. The first one contains a curriculum vitae, a "Breve Analyse des Travaux" and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposes 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg...Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation."
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fifth volume consists of material from correspondents from H-Z.
Crossing the boundaries between 'continental' and 'analytic' philosophical approaches, this book proposes a naturalistic revision of the mathematical ontology of Alain Badiou, establishing links with structuralist projects in the philosophy of science and mathematics.
Dummett argues that the aim of philosophy is the analysis of thought and that, with Frege, analytical philosophy learned that the route to the analysis of thought is the analysis of language. Here are bold and deep readings of the subject's history and character, which form the topic of this volume.
Kurt Gödel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gödels writings. The first three volumes, already published, consist of the papers and essays of Gödel. The final two volumes of the set deal with Gödel's correspondence with his contemporary mathematicians, this fourth volume consists of material from correspondents from A-G.
In this book wedescribe the basic elements of present computational technologies that use the algorithmic languages C/C++. The emphasis is on GNU compilers and libraries, FOSS for the solution of computational mathematics problems and visualization of the obtained data. At the beginning, a brief introduction to C is given with emphasis on its easy use in scientific and engineering computations.We describe the basic elements of the language, such as variables, data types, executable statements, functions, arrays, pointers, dynamic memory and file management. After that, we present some observations on the C++ programming language.We discuss the issues of program compiling, linking, and debugging. A quick guide to Eclipse is also presented in the book. The main features for editing, compiling, debugging and application assembling are considered.As examples, wesolve the standard problems of computational mathematics: operations with vectors and matrices, linear algebra problems, solution of nonlinear equations, numerical differentiation and integration, interpolation, initial value problems for ODEs and so on. Finally, basic features ofcomputational technologies are illustrated with model problems. All programs are implemented in C/C++ with using the GSL library. Gnuplot is employed to visualize the results of computations.
Ten amazing curves personally selected by one of today's most important math writers Curves for the Mathematically Curious is a thoughtfully curated collection of ten mathematical curves, selected by Julian Havil for their significance, mathematical interest, and beauty. Each chapter gives an account of the history and definition of one curve, providing a glimpse into the elegant and often surprising mathematics involved in its creation and evolution. In telling the ten stories, Havil introduces many mathematicians and other innovators, some whose fame has withstood the passing of years and others who have slipped into comparative obscurity. You will meet Pierre Bezier, who is known for his ubiquitous and eponymous curves, and Adolphe Quetelet, who trumpeted the ubiquity of the normal curve but whose name now hides behind the modern body mass index. These and other ingenious thinkers engaged with the challenges, incongruities, and insights to be found in these remarkable curves-and now you can share in this adventure. Curves for the Mathematically Curious is a rigorous and enriching mathematical experience for anyone interested in curves, and the book is designed so that readers who choose can follow the details with pencil and paper. Every curve has a story worth telling.
The mathematician and engineer Charles Babbage (1791 1871) is best remembered for his 'calculating machines', which are considered the forerunner of modern computers. Over the course of his life he wrote a number of books based on his scientific investigations, but in this volume, published in 1864, Babbage writes in a more personal vein. He points out at the beginning of the work that it 'does not aspire to the name of autobiography', though the chapters sketch out the contours of his life, beginning with his family, his childhood and formative years studying at Cambridge, and moving through various episodes in his scientific career. However, the work also diverges into his observations on other topics, as indicated by chapter titles such as 'Street Nuisances' and 'Wit'. Babbage's colourful recollections give an intimate portrait of the life of one of Britain's most influential inventors.
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.
Two features of mathematics stand out: its menagerie of seemingly
eternal objects (numbers, spaces, patterns, functions, categories,
morphisms, graphs, and so on), and the hieroglyphics of special
notations, signs, symbols, and diagrams associated with them. The
author challenges the widespread belief in the extra-human origins
of these objects and the understanding of mathematics as either a
purely mental activity about them or a formal game of manipulating
symbols. Instead, he argues that mathematics is a vast and unique
man-made imagination machine controlled by writing.
First published in 1903, Principles of Mathematics was Bertrand Russell's first major work in print. It was this title which saw him begin his ascent towards eminence. In this groundbreaking and important work, Bertrand Russell argues that mathematics and logic are, in fact, identical and what is commonly called mathematics is simply later deductions from logical premises. Highly influential and engaging, this important work led to Russell's dominance of analytical logic on western philosophy in the twentieth century.
The book presents the state of the art of research into the legacy of interwar Polish analytic philosophy and exemplifies different approaches to the history of philosophy. It contains discussions and reconstructions of aspects of Polish philosophy and logic as well as reactions to and developments of this tradition.
Most scholars think of David Hilbert's program as the most demanding and ideologically motivated attempt to provide a foundation for mathematics, and because they see technical obstacles in the way of realizing the program's goals, they regard it as a failure. Against this view, Curtis Franks argues that Hilbert's deepest and most central insight was that mathematical techniques and practices do not need grounding in any philosophical principles. He weaves together an original historical account, philosophical analysis, and his own development of the meta-mathematics of weak systems of arithmetic to show that the true philosophical significance of Hilbert's program is that it makes the autonomy of mathematics evident. The result is a vision of the early history of modern logic that highlights the rich interaction between its conceptual problems and technical development.
Mathematics is as much a science of the real world as biology is. It is the science of the world's quantitative aspects (such as ratio) and structural or patterned aspects (such as symmetry). The book develops a complete philosophy of mathematics that contrasts with the usual Platonist and nominalist options. |
You may like...
The Scientific Counter-Revolution - The…
Michael John Gorman
Hardcover
R3,307
Discovery Miles 33 070
The Equation of Knowledge - From Bayes…
Le Nguyen Hoang
Hardcover
Knowledge, Number and Reality…
Nils Kurbis, Bahram Assadian, …
Hardcover
R2,981
Discovery Miles 29 810
|