![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
This book offers a comprehensive critical survey of issues of historical interpretation and evaluation in Bertrand Russell's 1918 logical atomism lectures and logical atomism itself. These lectures record the culmination of Russell's thought in response to discussions with Wittgenstein on the nature of judgement and philosophy of logic and with Moore and other philosophical realists about epistemology and ontological atomism, and to Whitehead and Russell’s novel extension of revolutionary nineteenth-century work in mathematics and logic.  Russell's logical atomism lectures have had a lasting impact on analytic philosophy and on Russell's contemporaries including Carnap, Ramsey, Stebbing, and Wittgenstein. Comprised of 14 original essays, this book will demonstrate how the direct and indirect influence of these lectures thus runs deep and wide.
This monograph explores the logical systems of early logicians in the Arabic tradition from a theoretical perspective, providing a complete panorama of early Arabic logic and centering it within an expansive historical context. By thoroughly examining the writings of the first Arabic logicians, al-Farabi, Avicenna and Averroes, the author analyzes their respective theories, discusses their relationship to the syllogistics of Aristotle and his followers, and measures their influence on later logical systems. Beginning with an introduction to the writings of the most prominent Arabic logicians, the author scrutinizes these works to determine their categorical logic, as well as their modal and hypothetical logics. Where most other studies written on this subject focus on the Arabic logicians' epistemology, metaphysics, and theology, this volume takes a unique approach by focusing on the actual technical aspects and features of their logics. The author then moves on to examine the original texts as closely as possible and employs the symbolism of modern propositional, predicate, and modal logics, rendering the arguments of each logician clearly and precisely while clarifying the theories themselves in order to determine the differences between the Arabic logicians' systems and those of Aristotle. By providing a detailed examination of theories that are still not very well-known in Western countries, the author is able to assess the improvements that can be found in the Arabic writings, and to situate Arabic logic within the breadth of the history of logic. This unique study will appeal mainly to historians of logic, logicians, and philosophers who seek a better understanding of the Arabic tradition. It also will be of interest to modern logicians who wish to delve into the historical aspects and progression of their discipline. Furthermore, this book will serve as a valuable resource for graduate students who wish to complement their general knowledge of Arabic culture, logic, and sciences.
This book focuses on the game-theoretical semantics and epistemic logic of Jaakko Hintikka. Hintikka was a prodigious and esteemed philosopher and logician, and his death in August 2015 was a huge loss to the philosophical community. This book, whose chapters have been in preparation for several years, is dedicated to the work of Jaako Hintikka, and to his memory. This edited volume consists of 23 contributions from leading logicians and philosophers, who discuss themes that span across the entire range of Hintikka's career. Semantic Representationalism, Logical Dialogues, Knowledge and Epistemic logic are among some of the topics covered in this book's chapters. The book should appeal to students, scholars and teachers who wish to explore the philosophy of Jaako Hintikka.
This collection documents the work of the Hyperuniverse Project which is a new approach to set-theoretic truth based on justifiable principles and which leads to the resolution of many questions independent from ZFC. The contributions give an overview of the program, illustrate its mathematical content and implications, and also discuss its philosophical assumptions. It will thus be of wide appeal among mathematicians and philosophers with an interest in the foundations of set theory. The Hyperuniverse Project was supported by the John Templeton Foundation from January 2013 until September 2015
A comprehensive look at four of the most famous problems in mathematics Tales of Impossibility recounts the intriguing story of the renowned problems of antiquity, four of the most famous and studied questions in the history of mathematics. First posed by the ancient Greeks, these compass and straightedge problems-squaring the circle, trisecting an angle, doubling the cube, and inscribing regular polygons in a circle-have served as ever-present muses for mathematicians for more than two millennia. David Richeson follows the trail of these problems to show that ultimately their proofs-which demonstrated the impossibility of solving them using only a compass and straightedge-depended on and resulted in the growth of mathematics. Richeson investigates how celebrated luminaries, including Euclid, Archimedes, Viete, Descartes, Newton, and Gauss, labored to understand these problems and how many major mathematical discoveries were related to their explorations. Although the problems were based in geometry, their resolutions were not, and had to wait until the nineteenth century, when mathematicians had developed the theory of real and complex numbers, analytic geometry, algebra, and calculus. Pierre Wantzel, a little-known mathematician, and Ferdinand von Lindemann, through his work on pi, finally determined the problems were impossible to solve. Along the way, Richeson provides entertaining anecdotes connected to the problems, such as how the Indiana state legislature passed a bill setting an incorrect value for pi and how Leonardo da Vinci made elegant contributions in his own study of these problems. Taking readers from the classical period to the present, Tales of Impossibility chronicles how four unsolvable problems have captivated mathematical thinking for centuries.
Classical logic is concerned, loosely, with the behaviour of truths. Epistemic logic similarly is about the behaviour of known or believed truths. Justification logic is a theory of reasoning that enables the tracking of evidence for statements and therefore provides a logical framework for the reliability of assertions. This book, the first in the area, is a systematic account of the subject, progressing from modal logic through to the establishment of an arithmetic interpretation of intuitionistic logic. The presentation is mathematically rigorous but in a style that will appeal to readers from a wide variety of areas to which the theory applies. These include mathematical logic, artificial intelligence, computer science, philosophical logic and epistemology, linguistics, and game theory.
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
This broad and insightful book presents current scholarship in important subfields of philosophy of science and addresses an interdisciplinary and multidisciplinary readership. It groups carefully selected contributions into the four fields of I) philosophy of physics, II) philosophy of life sciences, III) philosophy of social sciences and values in science, and IV) philosophy of mathematics and formal modeling. Readers will discover research papers by Paul Hoyningen-Huene, Keizo Matsubara, Kian Salimkhani, Andrea Reichenberger, Anne Sophie Meincke, Javier Suarez, Roger Deulofeu, Ludger Jansen, Peter Hucklenbroich, Martin Carrier, Elizaveta Kostrova, Lara Huber, Jens Harbecke, Antonio Piccolomini d'Aragona and Axel Gelfert. This collection fosters dialogue between philosophers of science working in different subfields, and brings readers the finest and latest work across the breadth of the field, illustrating that contemporary philosophy of science has successfully broadened its scope of reflection. It will interest and inspire a wide audience of philosophers as well as scholars of the natural sciences, social sciences and the humanities. The volume shares selected contributions from the prestigious second triennial conference of the German Society for Philosophy of Science/ Gesellschaft fur Wissenschaftsphilosophie (GWP.2016, March 8, 2016 - March 11, 2016).
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.
This book explains exactly what human knowledge is. The key concepts in this book are structures and algorithms, i.e., what the readers "see" and how they make use of what they see. Thus in comparison with some other books on the philosophy (or methodology) of science, which employ a syntactic approach, the author's approach is model theoretic or structural. Properly understood, it extends the current art and science of mathematical modeling to all fields of knowledge. The link between structure and algorithms is mathematics. But viewing "mathematics" as such a link is not exactly what readers most likely learned in school; thus, the task of this book is to explain what "mathematics" should actually mean. Chapter 1, an introductory essay, presents a general analysis of structures, algorithms and how they are to be linked. Several examples from the natural and social sciences, and from the history of knowledge, are provided in Chapters 2-6. In turn, Chapters 7 and 8 extend the analysis to include language and the mind. Structures are what the readers see. And, as abstract cultural objects, they can almost always be seen in many different ways. But certain structures, such as natural numbers and the basic theory of grammar, seem to have an absolute character. Any theory of knowledge grounded in human culture must explain how this is possible. The author's analysis of this cultural invariance, combining insights from evolutionary theory and neuroscience, is presented in the book's closing chapter. The book will be of interest to researchers, students and those outside academia who seek a deeper understanding of knowledge in our present-day society.
This book contains more than 15 essays that explore issues in truth, existence, and explanation. It features cutting-edge research in the philosophy of mathematics and logic. Renowned philosophers, mathematicians, and younger scholars provide an insightful contribution to the lively debate in this interdisciplinary field of inquiry. The essays look at realism vs. anti-realism as well as inflationary vs. deflationary theories of truth. The contributors also consider mathematical fictionalism, structuralism, the nature and role of axioms, constructive existence, and generality. In addition, coverage also looks at the explanatory role of mathematics and the philosophical relevance of mathematical explanation. The book will appeal to a broad mathematical and philosophical audience. It contains work from FilMat, the Italian Network for the Philosophy of Mathematics. These papers collected here were also presented at their second international conference, held at the University of Chieti-Pescara, May 2016.
This book approaches work by Gilles Deleuze and Alain Badiou through their shared commitment to multiplicity, a novel approach to addressing one of the oldest philosophical questions: is being one or many? Becky Vartabedian examines major statements of multiplicity by Deleuze and Badiou to assess the structure of multiplicity as ontological ground or foundation, and the procedures these accounts prescribe for understanding one in relation to multiplicity. Written in a clear, engaging style, Vartabedian introduces readers to Deleuze and Badiou's key ontological commitments to the mathematical resources underpinning their accounts of multiplicity and one, and situates these as a conversation unfolding amid political and intellectual transformations.
This book presents new research into key areas of the work of German philosopher and mathematician Gottfried Wilhelm Leibniz (1646-1716). Reflecting various aspects of Leibniz's thought, this book offers a collection of original research arranged into four separate themes: Science, Metaphysics, Epistemology, and Religion and Theology. With in-depth articles by experts such as Maria Rosa Antognazza, Nicholas Jolley, Agustin Echavarria, Richard Arthur and Paul Lodge, this book is an invaluable resource not only for readers just beginning to discover Leibniz, but also for scholars long familiar with his philosophy and eager to gain new perspectives on his work.
This book explores precisely how mathematics allows us to model and predict the behaviour of physical systems, to an amazing degree of accuracy. One of the oldest explanations for this is that, in some profound way, the structure of the world is mathematical. The ancient Pythagoreans stated that "everything is number". However, while exploring the Pythagorean method, this book chooses to add a second principle of the universe: the mind. This work defends the proposition that mind and mathematical structure are the grounds of reality.
Biographie des ungarischen Mathematikers Janos Bolyai (1802-1860), der etwa gleichzeitig mit dem russischen Mathematiker Nikolai Lobatschewski und unabhangig von ihm die nichteuklidische Revolution eingeleitet hat. Diese erbrachte den Nachweis, dass die euklidische Geometrie keine Denknotwendigkeit ist, wie Kant irrtumlicherweise annahm. Das Verstandnis fur die kuhnen Gedankengange verbreitete sich allerdings erst in der zweiten Halfte des 19. Jahrhunderts durch die Arbeiten von Riemann, Beltrami, Klein und Poincare. Die nichteuklidische Revolution war eine der Grundlagen fur die Entwicklung der Physik im 20. Jahrhundert und fur Einsteins Erkenntnis, dass der uns umgebende reale Raum gekrummt ist. Tibor Weszely schildert das wechselvolle Leben des Offiziers der K.u.K.-Armee, der krank und vereinsamt starb. Bolyai hat sich auch intensiv mit den komplexen Zahlen und mit Zahlentheorie befasst, ebenso auch mit philosophischen und sozialen Fragen ( Allheillehre ) sowie mit Logik und Grammatik.
Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations for mathematicians and philosophers. In this book, John T. Baldwin places the revolution in its historical context from the ancient Greeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impact of model theory on contemporary algebraic geometry, number theory, combinatorics, and differential equations. This comprehensive and detailed book will interest logicians and mathematicians as well as those working on the history and philosophy of mathematics.
This book collects research papers on the philosophical foundations of probability, causality, spacetime and quantum theory. The papers are related to talks presented in six subsequent workshops organized by The Budapest-Krakow Research Group on Probability, Causality and Determinism. Coverage consists of three parts. Part I focuses on the notion of probability from a general philosophical and formal epistemological perspective. Part II applies probabilistic considerations to address causal questions in the foundations of quantum mechanics. Part III investigates the question of indeterminism in spacetime theories. It also explores some related questions, such as decidability and observation. The contributing authors are all philosophers of science with a strong background in mathematics or physics. They believe that paying attention to the finer formal details often helps avoiding pitfalls that exacerbate the philosophical problems that are in the center of focus of contemporary research. The papers presented here help make explicit the mathematical-structural assumptions that underlie key philosophical argumentations. This formally rigorous and conceptually precise approach will appeal to researchers and philosophers as well as mathematicians and statisticians.
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Is mathematics a discovery or an invention? Do numbers truly exist? What sort of reality do formulas describe? The complexity of mathematics - its abstract rules and obscure symbols - can seem very distant from the everyday. There are those things that are real and present, it is supposed, and then there are mathematical concepts: creations of our mind, mysterious tools for those unengaged with the world. Yet, from its most remote history and deepest purpose, mathematics has served not just as a way to understand and order, but also as a foundation for the reality it describes. In this elegant book, mathematician and philosopher Paolo Zellini offers a brief cultural and intellectual history of mathematics, ranging widely from the paradoxes of ancient Greece to the sacred altars of India, from Mesopotamian calculus to our own contemporary obsession with algorithms. Masterful and illuminating, The Mathematics of the Gods and the Algorithms of Men transforms our understanding of mathematical thinking, showing that it is inextricably linked with the philosophical and the religious as well as the mundane - and, indeed, with our own very human experience of the universe.
Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations for mathematicians and philosophers. In this book, John T. Baldwin places the revolution in its historical context from the ancient Greeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impact of model theory on contemporary algebraic geometry, number theory, combinatorics, and differential equations. This comprehensive and detailed book will interest logicians and mathematicians as well as those working on the history and philosophy of mathematics.
Philosophy of science studies the methods, theories, and concepts used by scientists. It mainly developed as a field in its own right during the twentieth century and is now a diversified and lively research area. This book surveys the current state of the discipline by focusing on central themes like confirmation of scientific hypotheses, scientific explanation, causality, the relationship between science and metaphysics, scientific change, the relationship between philosophy of science and science studies, the role of theories and models, unity of science. These themes define general philosophy of science. The book also presents sub-disciplines in the philosophy of science dealing with the main sciences: logic, mathematics, physics, biology, medicine, cognitive science, linguistics, social sciences, and economics. While it is common to address the specific philosophical problems raised by physics and biology in such a book, the place assigned to the philosophy of special sciences is much more unusual. Most authors collaborate on a regular basis in their research or teaching and share a common vision of philosophy of science and its place within philosophy and academia in general. The chapters have been written in close accordance with the three editors, thus achieving strong unity of style and tone.
Substance and the Fundamentality of the Familiar explicates and defends a novel neo-Aristotelian account of the structure of material objects. While there have been numerous treatments of properties, laws, causation, and modality in the neo-Aristotelian metaphysics literature, this book is one of the first full-length treatments of wholes and their parts. Another aim of the book is to further develop the newly revived area concerning the question of fundamental mereology, the question of whether wholes are metaphysically prior to their parts or vice versa. Inman develops a fundamental mereology with a grounding-based conception of the structure and unity of substances at its core, what he calls substantial priority, one that distinctively allows for the fundamentality of ordinary, medium-sized composite objects. He offers both empirical and philosophical considerations against the view that the parts of every composite object are metaphysically prior, in particular the view that ascribes ontological pride of place to the smallest microphysical parts of composite objects, which currently dominates debates in metaphysics, philosophy of science, and philosophy of mind. Ultimately, he demonstrates that substantial priority is well-motivated in virtue of its offering a unified solution to a host of metaphysical problems involving material objects. |
You may like...
Silicon Photonics, Volume 99
Chennupati Jagadish, Sebastian Lourdudoss, …
Hardcover
R5,217
Discovery Miles 52 170
Handbook of Himalayan Ecosystems and…
Bikash Ranjan Parida, Arvind Chandra Pandey, …
Hardcover
R6,984
Discovery Miles 69 840
Advances in Representation Theory of…
Ibrahim Assem, Christof Geiss, …
Paperback
R3,470
Discovery Miles 34 700
|