![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
In Cognition, Content, and the A Priori, Robert Hanna works out a unified contemporary Kantian theory of rational human cognition and knowledge. Along the way, he provides accounts of (i) intentionality and its contents, including non-conceptual content and conceptual content, (ii) sense perception and perceptual knowledge, including perceptual self-knowledge, (iii) the analytic-synthetic distinction, (iv) the nature of logic, and (v) a priori truth and knowledge in mathematics, logic, and philosophy. This book is specifically intended to reach out to two very different audiences: contemporary analytic philosophers of mind and knowledge on the one hand, and contemporary Kantian philosophers or Kant-scholars on the other. At the same time, it is also riding the crest of a wave of exciting and even revolutionary emerging new trends and new work in the philosophy of mind and epistemology, with a special concentration on the philosophy of perception. What is revolutionary in this new wave are its strong emphases on action, on cognitive phenomenology, on disjunctivist direct realism, on embodiment, and on sense perception as a primitive and proto-rational capacity for cognizing the world. Cognition, Content, and the A Priori makes a fundamental contribution to this philosophical revolution by giving it a specifically contemporary Kantian twist, and by pushing these new lines of investigation radically further.
Mathematics and logic have been central topics of concern since the
dawn of philosophy. Since logic is the study of correct reasoning,
it is a fundamental branch of epistemology and a priority in any
philosophical system. Philosophers have focused on mathematics as a
case study for general philosophical issues and for its role in
overall knowledge- gathering. Today, philosophy of mathematics and
logic remain central disciplines in contemporary philosophy, as
evidenced by the regular appearance of articles on these topics in
the best mainstream philosophical journals; in fact, the last
decade has seen an explosion of scholarly work in these areas.
Matrices offer some of the most powerful techniques in modem mathematics. In the social sciences they provide fresh insights into an astonishing variety of topics. Dominance matrices can show how power struggles in offices or committees develop; Markov chains predict how fast news or gossip will spread in a village; permutation matrices illuminate kinship structures in tribal societies. All these invaluable techniques and many more are explained clearly and simply in this wide-ranging book. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Durante la II guerra mondiale hanno avuto luogo numerosi risultati di rilievo nel campo della crittografia militare. Uno dei meno conosciuti e quello usato dal servizio di intelligence svedese, nei confronti del codice tedesco per le comunicazioni strategiche con i comandi dei paesi occupati nel nord Europa, le cui linee passavano per la Svezia. In tal modo, durante la fase piu critica della guerra la direzione politica e militare svedese era in grado di seguire i piani e le disposizioni dei Tedeschi, venendo a conoscenza dei piu arditi progetti per modificare la propria politica, tenendo la Svezia fuori dalla guerra. La violazione del codice tedesco e narrata in dettaglio, per la prima volta, con elementi che gli permettono di essere un ottima introduzione al campo della crittografia, oltre che un ritratto vitale e umano della societa del tempo: una disperata condizione bellica, l'intrigo politico e spionistico, il genio del matematico Arne Beurling, le difficolta e i trucchi del mestiere, e il lavoro sistematico e oscuro di una folla di decrittatori.
The design inference uncovers intelligent causes by isolating their key trademark: specified events of small probability. Just about anything that happens is highly improbable, but when a highly improbable event is also specified (i.e. conforms to an independently given pattern) undirected natural causes lose their explanatory power. Design inferences can be found in a range of scientific pursuits from forensic science to research into the origins of life to the search for extraterrestrial intelligence. This challenging and provocative 1998 book shows how incomplete undirected causes are for science and breathes new life into classical design arguments. It will be read with particular interest by philosophers of science and religion, other philosophers concerned with epistemology and logic, probability and complexity theorists, and statisticians.
A book that finally demystifies Newton's experiments in alchemy When Isaac Newton's alchemical papers surfaced at a Sotheby's auction in 1936, the quantity and seeming incoherence of the manuscripts were shocking. No longer the exemplar of Enlightenment rationality, the legendary physicist suddenly became "the last of the magicians." Newton the Alchemist unlocks the secrets of Newton's alchemical quest, providing a radically new understanding of the uncommon genius who probed nature at its deepest levels in pursuit of empirical knowledge. In this evocative and superbly written book, William Newman blends in-depth analysis of newly available texts with laboratory replications of Newton's actual experiments in alchemy. He does not justify Newton's alchemical research as part of a religious search for God in the physical world, nor does he argue that Newton studied alchemy to learn about gravitational attraction. Newman traces the evolution of Newton's alchemical ideas and practices over a span of more than three decades, showing how they proved fruitful in diverse scientific fields. A precise experimenter in the realm of "chymistry," Newton put the riddles of alchemy to the test in his lab. He also used ideas drawn from the alchemical texts to great effect in his optical experimentation. In his hands, alchemy was a tool for attaining the material benefits associated with the philosopher's stone and an instrument for acquiring scientific knowledge of the most sophisticated kind. Newton the Alchemist provides rare insights into a man who was neither Enlightenment rationalist nor irrational magus, but rather an alchemist who sought through experiment and empiricism to alter nature at its very heart.
Questo volume raccoglie lo scambio epistolare tra Cantor e Dedekind, finora edito parte in tedesco e parte in francese. Sara la prima edizione italiana completa di questo fondamentale carteggio, in cui si vedono nascere la nozione di cardinale e ordinale transfiniti, in cui si dimostra la non numerabilita dell'insieme dei numeri reali R e si leggono i primi tentativi e le correzioni alla costruzione di una biiezione tra R e R2, e le discussioni fra Cantor e Dedekind sull'invarianza della nozione di dimensione. "Pochi scritti matematici possono competere - scrive Pietro Nastasi nell'Introduzione - con questa corrispondenza nell'evidenziare il complesso intreccio psicologico che presiede all'invenzione matematica. E nessun lavoro storiografico potrebbe far emergere, meglio di queste lettere, la differenza fra le due personalita implicate: focosa e fantasiosa quella di Cantor, pacata e critica quella del piu anziano amico".
Guicciardini presents a comprehensive survey of both the research and teaching of Newtonian calculus, the calculus of "fluxions", over the period between 1700 and 1810. Although Newton was one of the inventors of calculus, the developments in Britain remained separate from the rest of Europe for over a century. While it is usually maintained that after Newton there was a period of decline in British mathematics, the author's research demonstrates that the methods used by researchers of the period yielded considerable success in laying the foundations and investigating the applications of the calculus. Even when "decline" set in, in mid century, the foundations of the reform were being laid, which were to change the direction and nature of the mathematics community. The book considers the importance of Isaac Newton, Roger Cotes, Brook Taylor, James Stirling, Abraham de Moivre, Colin Maclaurin, Thomas Bayes, John Landen and Edward Waring. This will be a useful book for students and researchers in the history of science, philosophers of science and undergraduates studying the history of mathematics.
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
Presenter l'analyse de base en suivant grosso modo l'ordre suivant laquelle elle a ete decouverte, voici le fil conducteur de cet ouvrage. Complete par un grand nombre de dessins, d'exemples et de contre-exemples, cet ouvrage est redige avec un veritable souci de pedagogie. Il est truffe de remarques historiques et de commentaires explicitant la motivation profonde des developpements exposes.
This distinctive anthology includes many of the most important
recent contributions to the philosophy of mathematics. The featured
papers are organized thematically, rather than chronologically, to
provide the best overview of philosophical issues connected with
mathematics and the development of mathematical knowledge. Coverage
ranges from general topics in mathematical explanation and the
concept of number, to specialized investigations of the ontology of
mathematical entities and the nature of mathematical truth, models
and methods of mathematical proof, intuitionistic mathematics, and
philosophical foundations of set theory. This volume explores the central problems and exposes intriguing
new directions in the philosophy of mathematics, making it an
essential teaching resource, reference work, and research
guide. The book complements "Philosophy of Logic: An Anthology" and "A Companion to Philosophical Logic, "also edited by Dale Jacquette (Blackwell 2001).
"Geschichte der Analysis" ist von einem internationalen Expertenteam geschrieben und stellt die gegenwartig umfassendste Darstellung der Herausbildung und Entwicklung dieser mathematischen Kerndisziplin dar. Der tiefgreifende begriffliche Wandel, den die Analysis im Laufe der Zeit durchgemacht hat, wird ebenso dargestellt, wie auch der Einfluss, den vor allem physikalische Probleme gehabt haben. Biographische und philosophische Hintergrunde werden ausgeleuchtet und ihre Relevanz fur die Theorieentwicklung gezeigt. Neben der eigentlichen Geschichte der Analysis bis ungefahr 1900 enthalt das Buch Spezialkapitel uber die Entwicklung der analytischen Mechanik im 18. Jahrhundert, Randwertprobleme der mathematischen Physik im 19. Jahrhundert, die Theorie der komplexen Funktionen, die Grundlagenkrise sowie historische Uberblicke uber die Variationsrechnung, Differentialgleichungen und Funktionalanalysis."
L'opera, pubblicata, anche per questa edizione, come Supplemento alla rivista LETTERA MATEMATICA, e frutto del convegno 'Matematica e Cultura' organizzato a Venezia nel Marzo 1998. Il convegno, giunto nel Marzo 1998 alla sua seconda edizione, si propone come un ponte tra i diversi aspetti del sapere umano. Pur avendo come punto di riferimento la matematica, si rivolge a tutti coloro che hanno curiosita e interessi culturali anche e soprattutto al di fuori della matematica. Nel volume si parla pertanto di musica, cinema, di arte, di filosofia, di letteratura, di internet e mass-media.
How can we identify events due to intelligent causes and distinguish them from events due to undirected natural causes? If we lack a causal theory how can we determine whether an intelligent cause acted? This book presents a reliable method for detecting intelligent causes: the design inference. The design inference uncovers intelligent causes by isolating the key trademark of intelligent causes: specified events of small probability. Design inferences can be found in a range of scientific pursuits from forensic science to research into the origins of life to the search for extraterrestrial intelligence. This challenging and provocative book will be read with particular interest by philosophers of science and religion, other philosophers concerned with epistemology and logic, probability and complexity theorists, and statisticians.
People who learn to solve problems ‘on the job’ often have to do it differently from people who learn in theory. Practical knowledge and theoretical knowledge is different in some ways but similar in other ways - or else one would end up with wrong solutions to the problems. Mathematics is also like this. People who learn to calculate, for example, because they are involved in commerce frequently have a more practical way of doing mathematics than the way we are taught at school. This book is about the differences between what we call practical knowledge of mathematics - that is street mathematics - and mathematics learned in school, which is not learned in practice. The authors look at the differences between these two ways of solving mathematical problems and discuss their advantages and disadvantages. They also discuss ways of trying to put theory and practice together in mathematics teaching.
In diesem Band soll eine zusammenfassende Darstellung der ausseren Ent- wicklung der Mathematik an den deutschen Universitaten gegeben wer- den. Dazu gehoert insbesondere eine moeglichst vollstandige und verlassliche Aufstellung des Personalbestandes der mathematischen Lehrstuhle und In- stitute. Eine solche Zusammenfassung hat bisher nicht existiert, was die mathematik-historische Forschung in mancher Hinsicht erschwert hat. Der Schwerpunkt der Darstellung liegt auf der institutionellen Seite; der Band enthalt zwar viele biographische Daten, aber keine eigentlichen Biogra- phien. Vor und bei der Erstellung dieses Buches waren eine Reihe grundsatzli- cher Fragen und zahlreiche Detailprobleme zu klaren. Als erstes musste der behandelte Zeitraum festgelegt werden. Hier schien die Periode von 1800 bis 1945 eine naheliegende Wahl zu sein. Vor den Universitatsreformen zu Beginn des 19. Jahrhunderts war die Mathematik an den Universitaten ganz unbedeutend; praktisch alle Professoren aus jener Zeit sind heute ver- gessen. Tatsachlich gilt dies auch noch fur die ersten Jahrzehnte des 19. Jahrhunderts, und ohne wesentlichen Verlust hatte man auch etwa 1830 beginnen koennen. Der gewahlte Zeitraum hat jedoch den Vorteil, dass der grosse Aufschwung der Universitaten allgemein und der Mathematik spe- ziell in der ersten Halfte des letzten Jahrhunderts deutlicher wird. Das Jahr 1945 stellt andererseits eine so einschneidende Zasur dar, dass es na- hezu zwingend war, die Darstellung hier abzuschliessen. Der enorme Ausbau des Universitatssystems ab den spaten funfziger Jahren musste einer weite- ren Publikation vorbehalten bleiben.
Mit den hier abgedruckten klassischen biographischen Texten der Autoren Dirichlet, Kummer, Hensel, Frobenius und Hilbert werden dem Leser Einblicke in Leben und Werk herausragender Wissenschaftler erAffnet. AuAerdem erhAlt er authentische Informationen A1/4ber den Wissenschaftsbereich des 19. Jahrhunderts. Fotos und bisher unverAffentlichte Archivalien komplettieren diesen von H. Reichardt, dem langjAhrigen Direktor an den Mathematischen Instituten der Humboldt-UniversitAt Berlin sowie der Akademie der Wissenschaften, herausgegebenen Band.
Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.
What did it mean to be reasonable in the Age of Reason? Classical probabilists from Jakob Bernouli through Pierre Simon Laplace intended their theory as an answer to this question--as "nothing more at bottom than good sense reduced to a calculus," in Laplace's words. In terms that can be easily grasped by nonmathematicians, Lorraine Daston demonstrates how this view profoundly shaped the internal development of probability theory and defined its applications.
If numbers were objects, how could there be human knowledge of number? Numbers are not physical objects: must we conclude that we have a mysterious power of perceiving the abstract realm? Or should we instead conclude that numbers are fictions? This book argues that numbers are not objects: they are magnitude properties. Properties are not fictions and we certainly have scientific knowledge of them. Much is already known about magnitude properties such as inertial mass and electric charge, and much continues to be discovered. The book says the same is true of numbers. In the theory of magnitudes, the categorial distinction between quantity and individual is of central importance, for magnitudes are properties of quantities, not properties of individuals. Quantity entails divisibility, so the logic of quantity needs mereology, the a priori logic of part and whole. The three species of quantity are pluralities, continua and series, and the book presents three variants of mereology, one for each species of quantity. Given Euclid's axioms of equality, it is possible without the use of set theory to deduce the axioms of the natural, real and ordinal numbers from the respective mereologies of pluralities, continua and series. Knowledge and the Philosophy of Number carries out these deductions, arriving at a metaphysics of number that makes room for our a priori knowledge of mathematical reality.
This publication includes an unabridged and annotated translation of two works by Johann Heinrich Lambert (1728-1777) written in the 1760s: Vorlaufige Kenntnisse fur die, so die Quadratur und Rectification des Circuls suchen and Memoire sur quelques proprietes remarquables des quantites transcendentes circulaires et logarithmiques. The translations are accompanied by a contextualised study of each of these works and provide an overview of Lambert's contributions, showing both the background and the influence of his work. In addition, by adopting a biographical approach, it allows readers to better get to know the scientist himself. Lambert was a highly relevant scientist and polymath in his time, admired by the likes of Kant, who despite having made a wide variety of contributions to different branches of knowledge, later faded into an undeserved secondary place with respect to other scientists of the eighteenth century. In mathematics, in particular, he is famous for his research on non-Euclidean geometries, although he is likely best known for having been the first who proved the irrationality of pi. In his Memoire, he conducted one of the first studies on hyperbolic functions, offered a surprisingly rigorous proof of the irrationality of pi, established for the first time the modern distinction between algebraic and transcendental numbers, and based on such distinction, he conjectured the transcendence of pi and therefore the impossibility of squaring the circle.
Die wissenschaftlichen Leistungen Richard Dedekinds (1831-1916), an dessen 150. Geburtstag dieser Gedenkband erinnern solI, sind jedem Mathematiker bekannt: Seine Begriindung der algebraischen Zahlen- theorie, die verbunden war mit der Ausarbeitung fundamentaler alge- braischer Begriffe, der Dedekindsche Schnitt, der die erste exakte Kon- sttuktion der reellen Zahlen und die Grundlegung der Analysis ermog- lichte, oder seine mit H. Weber entworfene Theorie der algebraischen Funktionenkorper gehoren zu den wichtigsten Fortschritten in der Mathematik des vorigen Jahrhunderts. 1m Zuge zunehmenden Interesses an geschichtlichen Entwicklungen und historischer Betrachtungsweise hat dariiber hinaus Dedekind in den letzten J ahren auch in besonderem Mage die Aufmerksamkeit der Mathematikhistoriker auf sich gezogen. Eine ganze Reihe von Arbeiten, die sich ausschlieglich oder wesentlich mit ihm und seinem Werk beschaftigen, sind in letzter Zeit erschienen. Dennoch ist unser Bild sowohl des Mathematikers als auch des Menschen Richard Dedekind bis heute unvollstandig und liickenhaft geblieben. Dies gilt vor allem rur den jungen Dedekind, der von 1854 bis 1871 fast nur kleinere Ge1egenheitsarbeiten publizierte, obwohl sich in diesen J ahren schon seine Hauptarbeitsgebiete und auch seine Auffassungen von der Mathematik und wie sie zu betreiben sei herausbildeten und festigten. Auch der bisher bekanntgewordene und publizierte Brief- wechsel stammt ganz iiberwiegend aus spaterer Zeit.
Kaum jemals wird tin Werk eines Historikers einen so starken Reiz tiben und so tiefe Einblicke in das Wesen der Geschichte offnen wie Gedanken und Erinnerungen eines groBen Staatsmannes, welcher selbst ein langes Leben hindurch an fUhrender Stelle in die Geschicke der Welt eingegriffen hat und eine tiberlegene geistige Per- sonlichkeit mit der Kraft ktinstlerischer schriftstellerischer Gestaltung verbindet. Solchc Werke, schon fUr die politische Geschichte eine kostbare Seltenheit, sind fiir die Geschichte der exakten Wissenschaften bis- her wohl kaum geschrieben worden. Urn so notwendiger erschien es, als Felix Klein vor Jahresfrist starb, mit der Herausgabe seiner Vor- lesungen zur Geschichte der Mathematik und mathematischen Physik des 19. Jahrhunderts nicht zu zogern. Diese Vorlesungen sind die reife Frucht eines reichen Lebens in- mitten der wissenschaftlichen Ereignisse, der Ausdruck tiberlegener Weisheit und tiefen historischen Sinnes, einer hohen menschlichen Kultur und einer meisterhaften Gestaltungskraft; sie werden sicherlich auf aIle Mathematiker und Physiker und weit tiber diesen Kreis hin- aus eine groBe Wirkung austiben. In einer Zeit, wo der Blick der Menschen auch in der Wissenschaft allzusehr am Gegenwartigen hangt und das Einzelne in unnatiirlicher VergroBerung und iiber- triebener Bedeutung gegentiber dem Ganzen zu betrachten pflegt, kann das Kleinsche Werk vielen die Augen wieder offnen fUr die Zusammenhange und Entwicklungslinien unserer Wissenschaft im GroBen.
Eine sehr reizvolle Aufgabe mathematikhistorischer Forschung besteht darin, die Geschichte bestimmter mathematischer Aufgabentypen und Loesungsmethoden zu erforschen. Es ist schon lange bekannt, dass oft dieselben Probleme zu verschiedenen Zeiten und in von einander weit entfernten Kulturkreisen behandelt wurden. Dabei nimmt man an, dass manche Probleme des augewandten Rechnens Bestandteil der Literatur vieler Voelker sind, ohne dass man eine gegenseitige Beeinflussung vermuten darf. Wenn allerdings eine Aufgabe mit denselben nicht zu einfachen Zahlenwerten in verschiedenen Quellen uberliefert wird, muss man an eine Abhangigkeit denken. Es ist jedoch auch in diesen Fallen gegenwartig noch nicht moeglich, zu sicheren Erkenntnissen uber den Weg eines Problems zu gelangen; dazu sind die kulturellen Beziehungen zwischen den Voelkern zu komplex und in den Einzelheiten zu wenig geklart. Gemeinsam mit Mathematikhistorikern mussten hier Vertreter anderer historischer Disziplinen wie Wirtschafts- und Sozialgeschichte, aber auch die Philologen mitarbeiten. Eine solche Arbeit koennte dazu beitragen,_ die kulturellen Leistungen der be teiligten Voelker, die Gemeinsamkeiten, aber auch die Unterschiede ihrer wissenschaftlichen Entwicklung herauszuarbeiten und dabei insbesondere den europazentrischen Standpunkt zu uberwinden, der immer noch viele wissenschaftshistorische Darstellungen beherrscht. Als Vorarbeit fur eine derart anspruchsvolle Untersuchung stellt sich dem Mathematik historiker zunachst die Aufgabe, die zahlreichen Sammlungen praktischer Mathematik zu untersuchen, festzustellen, wo das einzelne Problem oder die verwendete Methode sich erst mals findet, und - wenn moeglich - Aussagen uber Entstehung und Einfluss der betreffenden Sammlung zu machen. Gerade in den letzten Jahrzehnten sind hier neue Untersuchungen erschienen. So hat K.
Science Without Numbers caused a stir in philosophy on its original publication in 1980, with its bold nominalist approach to the ontology of mathematics and science. Hartry Field argues that we can explain the utility of mathematics without assuming it true. Part of the argument is that good mathematics has a special feature ("conservativeness") that allows it to be applied to "nominalistic" claims (roughly, those neutral to the existence of mathematical entities) in a way that generates nominalistic consequences more easily without generating any new ones. Field goes on to argue that we can axiomatize physical theories using nominalistic claims only, and that in fact this has advantages over the usual axiomatizations that are independent of nominalism. There has been much debate about the book since it first appeared. It is now reissued in a revised contains a substantial new preface giving the author's current views on the original book and the issues that were raised in the subsequent discussion of it. |
You may like...
Encyclopedia of Child and Adolescent…
Bonnie Halpern-Felsher
Hardcover
R60,438
Discovery Miles 604 380
Accelerating MATLAB with GPU Computing…
Jung Suh, Youngmin Kim
Paperback
R1,459
Discovery Miles 14 590
Multigraded Algebra and Applications…
Viviana Ene, Ezra Miller
Hardcover
R4,149
Discovery Miles 41 490
Soft Computing in Data Analytics…
Janmenjoy Nayak, Ajith Abraham, …
Paperback
R5,303
Discovery Miles 53 030
The Oxford Handbook of Information…
Caroline Fery, Shinichiro Ishihara
Hardcover
R4,569
Discovery Miles 45 690
Disinformation, Misinformation, and Fake…
Kai Shu, Suhang Wang, …
Hardcover
R4,640
Discovery Miles 46 400
|