![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
"The Mathematician's Brain" poses a provocative question about the world's most brilliant yet eccentric mathematical minds: were they brilliant because of their eccentricities or in spite of them? In this thought-provoking and entertaining book, David Ruelle, the well-known mathematical physicist who helped create chaos theory, gives us a rare insider's account of the celebrated mathematicians he has known-their quirks, oddities, personal tragedies, bad behavior, descents into madness, tragic ends, and the sublime, inexpressible beauty of their most breathtaking mathematical discoveries. Consider the case of British mathematician Alan Turing. Credited with cracking the German Enigma code during World War II and conceiving of the modern computer, he was convicted of "gross indecency" for a homosexual affair and died in 1954 after eating a cyanide-laced apple--his death was ruled a suicide, though rumors of assassination still linger. Ruelle holds nothing back in his revealing and deeply personal reflections on Turing and other fellow mathematicians, including Alexander Grothendieck, Rene Thom, Bernhard Riemann, and Felix Klein. But this book is more than a mathematical tell-all. Each chapter examines an important mathematical idea and the visionary minds behind it. Ruelle meaningfully explores the philosophical issues raised by each, offering insights into the truly unique and creative ways mathematicians think and showing how the mathematical setting is most favorable for asking philosophical questions about meaning, beauty, and the nature of reality. "The Mathematician's Brain" takes you inside the world--and heads--of mathematicians. It's a journey you won't soon forget."
Why bother to praise mathematics when you claim, as Alain Badiou does, that philosophy is first and foremost a metaphysics of happiness, or else it s not worth an hour of trouble? What possible relationship can there be between mathematics and happiness? That is precisely the issue at stake in this dialogue, which serves as a very accessible introduction to what mathematics is and an exploration of the crucial influence it has always exerted on the greatest philosophers. Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.
We use addition on a daily basis--yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research. Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series--long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+...=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms--the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem. Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.
The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.
Computation is revolutionizing our world, even the inner world of the 'pure' mathematician. Mathematical methods - especially the notion of proof - that have their roots in classical antiquity have seen a radical transformation since the 1970s, as successive advances have challenged the priority of reason over computation. Like many revolutions, this one comes from within. Computation, calculation, algorithms - all have played an important role in mathematical progress from the beginning - but behind the scenes, their contribution was obscured in the enduring mathematical literature. To understand the future of mathematics, this fascinating book returns to its past, tracing the hidden history that follows the thread of computation. Along the way it invites us to reconsider the dialog between mathematics and the natural sciences, as well as the relationship between mathematics and computer science. It also sheds new light on philosophical concepts, such as the notions of analytic and synthetic judgment. Finally, it brings us to the brink of the new age, in which machine intelligence offers new ways of solving mathematical problems previously inaccessible. This book is the 2007 winner of the Grand Prix de Philosophie de l'Academie Francaise.
"Casti Tours offers the most spectacular vistas of modern applied mathematics."— Nature Mathematical modeling is about rules—the rules of reality. Reality Rules explores the syntax and semantics of the language in which these rules are written, the language of mathematics. Characterized by the clarity and vision typical of the author's previous books, Reality Rules is a window onto the competing dialects of this language—in the form of mathematical models of real-world phenomena—that researchers use today to frame their views of reality. Moving from the irreducible basics of modeling to the upper reaches of scientific and philosophical speculation, Volumes 1 and 2, The Fundamentals and The Frontier, are ideal complements, equally matched in difficulty, yet unique in their coverage of issues central to the contemporary modeling of complex systems. Engagingly written and handsomely illustrated, Reality Rules is a fascinating journey into the conceptual underpinnings of reality itself, one that examines the major themes in dynamical system theory and modeling and the issues related to mathematical models in the broader contexts of science and philosophy. Far-reaching and far-sighted, Reality Rules is destined to shape the insight and work of students, researchers, and scholars in mathematics, science, and the social sciences for generations to come. Of related interest . . . ALTERNATE REALITIES Mathematical Models of Nature and Man John L. Casti A thoroughly modern account of the theory and practice of mathematical modeling with a treatment focusing on system-theoretic concepts such as complexity, self-organization, adaptation, bifurcation, resilience, surprise and uncertainty, and the mathematical structures needed to employ these in a formal system. 1989 0-471-61842-X 493pp.
Medieval Islamic World: An Intellectual History of Science and Politics surveys major scientific and philosophical discoveries in the medieval period within the broader Islamicate world, providing an alternative historical framework to that of the primarily Eurocentric history of science and philosophy of science and technology fields. Medieval Islamic World serves to address the history of rationalist inquiry within scholarly institutions in medieval Islamic societies, surveying developments in the fields of medicine and political theory, and the scientific disciplines of astronomy, chemistry, physics, and mechanics, as led by medieval Muslim scholarship.
This collection of essays examines logic and its philosophy. The author investigates the nature of logic not only by describing its properties but also by showing philosophical applications of logical concepts and structures. He evaluates what logic is and analyzes among other aspects the relations of logic and language, the status of identity, bivalence, proof, truth, constructivism, and metamathematics. With examples concerning the application of logic to philosophy, he also covers semantic loops, the epistemic discourse, the normative discourse, paradoxes, properties of truth, truth-making as well as theology, being and logical determinism. The author concludes with a philosophical reflection on nothingness and its modelling.
A survey of recent developments both in the classical and modern fields of the theory. Contents include: The complex analytic structure of the space of closed Riemann surfaces; Complex analysis on noncompact Riemann domains; Proof of the Teichmuller-Ahlfors theorem; The conformal mapping of Riemann surfaces; On certain coefficients of univalent functions; Compact analytic surfaces; On differentiable mappings; Deformations of complex analytic manifolds. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
A History of Mathematics: From Mesopotamia to Modernity covers the evolution of mathematics through time and across the major Eastern and Western civilizations. It begins in Babylon, then describes the trials and tribulations of the Greek mathematicians. The important, and often neglected, influence of both Chinese and Islamic mathematics is covered in detail, placing the description of early Western mathematics in a global context. The book concludes with modern mathematics, covering recent developments such as the advent of the computer, chaos theory, topology, mathematical physics, and the solution of Fermat's Last Theorem. Containing more than 100 illustrations and figures, this text, aimed at advanced undergraduates and postgraduates, addresses the methods and challenges associated with studying the history of mathematics. The reader is introduced to the leading figures in the history of mathematics (including Archimedes, Ptolemy, Qin Jiushao, al-Kashi, al-Khwarizmi, Galileo, Newton, Leibniz, Helmholtz, Hilbert, Alan Turing, and Andrew Wiles) and their fields. An extensive bibliography with cross-references to key texts will provide invaluable resource to students and exercises (with solutions) will stretch the more advanced reader.
A survey of recent developments both in the classical and modern fields of the theory. Contents include: The complex analytic structure of the space of closed Riemann surfaces; Complex analysis on noncompact Riemann domains; Proof of the Teichmuller-Ahlfors theorem; The conformal mapping of Riemann surfaces; On certain coefficients of univalent functions; Compact analytic surfaces; On differentiable mappings; Deformations of complex analytic manifolds. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfangen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen fur die historische wie auch die disziplingeschichtliche Forschung zur Verfugung, die jeweils im historischen Kontext betrachtet werden mussen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
How to Free Your Inner Mathematician: Notes on Mathematics and Life offers readers guidance in managing the fear, freedom, frustration, and joy that often accompany calls to think mathematically. With practical insight and years of award-winning mathematics teaching experience, D'Agostino offers more than 300 hand-drawn sketches alongside accessible descriptions of fractals, symmetry, fuzzy logic, knot theory, Penrose patterns, infinity, the Twin Prime Conjecture, Arrow's Impossibility Theorem, Fermat's Last Theorem, and other intriguing mathematical topics. Readers are encouraged to embrace change, proceed at their own pace, mix up their routines, resist comparison, have faith, fail more often, look for beauty, exercise their imaginations, and define success for themselves. Mathematics students and enthusiasts will learn advice for fostering courage on their journey regardless of age or mathematical background. How to Free Your Inner Mathematician delivers not only engaging mathematical content but provides reassurance that mathematical success has more to do with curiosity and drive than innate aptitude.
Der Pauli-Briefwechsel ist eine der wichtigsten Quellen zur Geschichte der Physik des 20. Jahrhunderts. Fur diesen ersten Teilband wurden zunachst 430 Briefe aus den Jahren 1950 - 1952 ausgewahlt. Sie dokumentieren neben der physikalischen Grundlagenforschung die ideengeschichtlichen Probleme dieser Zeit. UEber das rein historische Interesse hinausgehend wird der Leser zur Reflexion uber die Grenzen unseres gegenwartigen naturwissenschaftlichen Weltbildes angeregt. Ein Standardwerk fur jeden, der sich ernsthaft mit der Geschichte der Physik auseinandersetzt.
Die Gesammelten Abhandlungen von Ferdinand Georg Frobenius erscheinen in drei Banden. Band I enthalt in chronologischer Abfolge seine Veroeffentlichungen von 1870 bis 1880, Band II jene von 1880 bis 1896, und Band III die Artikel von 1896 bis 1917. Band III umfasst die Veroeffentlichungen Nr. 53 bis 107. R. Brauer: ...if the reader wants to get an idea about the importance of Frobenius work today, all he has to do is to look at books and papers on groups...
Die Gesammelten Abhandlungen von Ferdinand Georg Frobenius erscheinen in drei Banden. Band I enthalt in chronologischer Abfolge seine Veroeffentlichungen von 1870 bis 1880, Band II jene von 1880 bis 1896, und Band III die Artikel von 1896 bis 1917. Band II umfasst die Artikel Nr. 22 bis 52. R. Brauer: ...if the reader wants to get an idea about the importance of Frobenius work today, all he has to do is to look at books and papers on groups...
While we are commonly told that the distinctive method of mathematics is rigorous proof, and that the special topic of mathematics is abstract structure, there has been no agreement among mathematicians, logicians, or philosophers as to just what either of these assertions means. John P. Burgess clarifies the nature of mathematical rigor and of mathematical structure, and above all of the relation between the two, taking into account some of the latest developments in mathematics, including the rise of experimental mathematics on the one hand and computerized formal proofs on the other hand. The main theses of Rigor and Structure are that the features of mathematical practice that a large group of philosophers of mathematics, the structuralists, have attributed to the peculiar nature of mathematical objects are better explained in a different way, as artefacts of the manner in which the ancient ideal of rigor is realized in modern mathematics. Notably, the mathematician must be very careful in deriving new results from the previous literature, but may remain largely indifferent to just how the results in the previous literature were obtained from first principles. Indeed, the working mathematician may remain largely indifferent to just what the first principles are supposed to be, and whether they are set-theoretic or category-theoretic or something else. Along the way to these conclusions, a great many historical developments in mathematics, philosophy, and logic are surveyed. Yet very little in the way of background knowledge on the part of the reader is presupposed.
This Element aims to present an outline of mathematics and its history, with particular emphasis on events that shook up its philosophy. It ranges from the discovery of irrational numbers in ancient Greece to the nineteenth- and twentieth-century discoveries on the nature of infinity and proof. Recurring themes are intuition and logic, meaning and existence, and the discrete and the continuous. These themes have evolved under the influence of new mathematical discoveries and the story of their evolution is, to a large extent, the story of philosophy of mathematics.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfangen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen fur die historische wie auch die disziplingeschichtliche Forschung zur Verfugung, die jeweils im historischen Kontext betrachtet werden mussen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Algebraic Art explores the invention of a peculiarly Victorian account of the nature and value of aesthetic form, and it traces that account to a surprising source: mathematics. The nineteenth century was a moment of extraordinary mathematical innovation, witnessing the development of non-Euclidean geometry, the revaluation of symbolic algebra, and the importation of mathematical language into philosophy. All these innovations sprang from a reconception of mathematics as a formal rather than a referential practice-as a means for describing relationships rather than quantities. For Victorian mathematicians, the value of a claim lay not in its capacity to describe the world but its internal coherence. This concern with formal structure produced a striking convergence between mathematics and aesthetics: geometers wrote fables, logicians reconceived symbolism, and physicists described reality as consisting of beautiful patterns. Artists, meanwhile, drawing upon the cultural prestige of mathematics, conceived their work as a 'science' of form, whether as lines in a painting, twinned characters in a novel, or wavelike stress patterns in a poem. Avant-garde photographs and paintings, fantastical novels like Flatland and Lewis Carroll's children's books, and experimental poetry by Swinburne, Rossetti, and Patmore created worlds governed by a rigorous internal logic even as they were pointedly unconcerned with reference or realist protocols. Algebraic Art shows that works we tend to regard as outliers to mainstream Victorian culture were expressions of a mathematical formalism that was central to Victorian knowledge production and that continues to shape our understanding of the significance of form.
This scarce antiquarian book is a selection from Kessinger Publishing's Legacy Reprint Series. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment to protecting, preserving, and promoting the world's literature. Kessinger Publishing is the place to find hundreds of thousands of rare and hard-to-find books with something of interest for everyone
Gerhard Gentzen (1909-1945) ist der Begrunder der modernen mathematischen Beweistheorie. Die nachhaltige Bedeutung der von ihm entwickelten Methoden, Regeln und Strukturen zeigt sich heute in wichtigen Teilgebieten der Informatik, in der Verifikation von Programmen. Die Arbeiten Gentzens uber das naturliche Schliessen, der Sequenzenkalkul und die Ordinal-Beweistheorie beeindrucken noch heute durch ihre Einsicht und Eleganz. Der Autor dokumentiert in dieser ersten umfassenden Biografie Leben und Werk Gerhard Gentzens, seinen tragischen Lebensweg, Festnahme 1945 in Prag, Gefangenschaft und Tod. Die Bedingungen wissenschaftlicher Forschung, in diesem Fall der mathematischen Logik, im nationalsozialistischen Deutschland, den ideologischen Kampf um eine "Deutsche Logik" und deren Protagonisten ist ein weiterer Schwerpunkt des Buches. Zahlreiche, bislang unveroffentlichte Quellen, Fotos und Dokumente aus Korrespondenzen und Nachlass sowie der Abdruck dreier Vortrage von Gerhard Gentzen machen dieses Buch zu einer erstrangigen Informationsquelle uber diesen bedeutenden Mathematiker und seine Zeit. Der Band wird erganzt durch ein Essay von Jan von Plato uber Gentzens Beweistheorie und deren Entwicklung bis zur Gegenwart."
eine Assistentenstelle bei GERHARD HARIG am bereits 1906 gegrundeten Karl-Sudhoff-Institut fur Geschichte der Medizin und Naturwissenschaften in Leipzig, die er anderen Angeboten (z. B. beim Flugzeugbau) vorzog. Nach dem Tode von Professor HARIG bekam HANS WUSSING 1967 (als einziger habilitierter Wissenschaftshistoriker in der DDR) eine Dozentur fur Geschichte der Mathematik und der Naturwissenschaften und wurde zum kommissarischen Direktor des Sudhoff-Instituts eingesetzt. Ein Jahr spater wurde er zum a. o. Professor fur Geschichte der Mathematik und der Naturwissenschaften berufen, 1970 erfolgte die Ernennung zum ordent lichen Professor. Von 1977 bis 1982 war er Direktor des Sudhoff-Instituts und ist seit 1982 Leiter der Abteilung fur Geschichte der Mathematik und der Naturwissenschaften. Die Reihe von WUSSINGs Publikationen ist lang. Eine Liste seiner Veroffentlichungen bis 1985 findet sich in der Zeitschrift NTM, Bd. 24 (1987), S. 1-5. Es ist hier nicht der Ort, all seine Arbeiten im einzelnen zu wurdigen. Erwahnt seien nur die wichtigsten Buchpublikationen: 1962 erschien bei B. G. Teubner Leipzig die Mathematik in der Antike. WUSSING verfasste Biographien von COPERNICUS, GAUSS, NEWTON und ADAM RIES. Auch seine neueste Publikation hat mit dem bekannten deutschen Rechenmeister zu tun: Die Goss von ADAM RIES konnte er trotz schwie rigster Umstande zusammen mit WOLFGANG KAUNZNER noch rechtzeitig im Jubilaumsjahr 1992 herausgeben. WUSSING ist auch ein erfolgreicher Hochschullehrer."
At the time of David Hilbert's death in 1943, his leading disciple, Her- mann Weyl, wrote that " . . . the era of mathematics upon which he impressed the seal of his spirit and which is now sinking below the horizon achieved a more perfect balance than prevailed before and after, between the mastering of concrete problems and the formation of general abstract concepts. "l Weyl attributed this "happy equilibrium" in no small part to Hilbert 's work and its influence, adding that "no mathematician of equal stature has risen from our generation., 2 Surely, it would be difficult to exaggerate the importance of Hilbert's contributions to twentieth-century mathematics or even to conceive of what mathematics today would be like without them. He overturned the concep- tual framework of older fields ranging from invariant theory and algebraic number theory to the foundations of geometry. He rehabilitated the Dirich- let Principle, propelled integral equation theory to the forefront of active research, derived the field equations governing Einstein's general theory of relativity, created modern proof theory and metamathematics, and through- out his career he championed the power and efficacy of the axiomatic method not only for mathematics but for all of the exact sciences. Every educated mathematician knows something about Hilbert space, the Hilbert problems, and Hilbert 's formalist program. |
You may like...
Lions of the North - Sounds of the New…
Benjamin R Teitelbaum
Hardcover
R3,271
Discovery Miles 32 710
George Burns and Gracie Allen - A…
Cynthia Clements, Sandra Weber
Hardcover
R2,313
Discovery Miles 23 130
Soft Computing for Data Mining…
K.R. Venugopal, K.G. Srinivasa, …
Hardcover
R4,203
Discovery Miles 42 030
Chinese Patent Law - A Practical Guide
Yongbo Li, Fanwen Kong, …
Hardcover
R4,378
Discovery Miles 43 780
|