![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Mathematical Explorations follows on from the author's previous book, Creative Mathematics, in the same series, and gives the reader experience in working on problems requiring a little more mathematical maturity. The author's main aim is to show that problems are often solved by using mathematics that is not obviously connected to the problem, and readers are encouraged to consider as wide a variety of mathematical ideas as possible. In each case, the emphasis is placed on the important underlying ideas rather than on the solutions for their own sake. To enhance understanding of how mathematical research is conducted, each problem has been chosen not for its mathematical importance, but because it provides a good illustration of how arguments can be developed. While the reader does not require a deep mathematical background to tackle these problems, they will find their mathematical understanding is enriched by attempting to solve them.
Information is a central topic in computer science, cognitive science, and philosophy. In spite of its importance in the "information age," there is no consensus on what information is, what makes it possible, and what it means for one medium to carry information about another. Drawing on ideas from mathematics, computer science, and philosophy, this book addresses the definition and place of information in society. The authors, observing that information flow is possible only within a connected distribution system, provide a mathematically rigorous, philosophically sound foundation for a science of information. They illustrate their theory by applying it to a wide range of phenomena, from file transfer to DNA, from quantum mechanics to speech act theory.
Alfred Tarski, one of the greatest logicians of all time, is widely thought of as 'the man who defined truth'. His mathematical work on the concepts of truth and logical consequence are cornerstones of modern logic, influencing developments in philosophy, linguistics and computer science. Tarski was a charismatic teacher and zealous promoter of his view of logic as the foundation of all rational thought, a bon-vivant and a womanizer, who played the 'great man' to the hilt. Born in Warsaw in 1901 to Jewish parents, he changed his name and converted to Catholicism, but was never able to obtain a professorship in his home country. A fortuitous trip to the United States at the outbreak of war saved his life and turned his career around, even while it separated him from his family for years. By the war's end he was established as a professor of mathematics at the University of California, Berkeley. There Tarski built an empire in logic and methodology that attracted students and distinguished researchers from all over the world. From the cafes of Warsaw and Vienna to the mountains and deserts of California, this first full length biography places Tarski in the social, intellectual and historical context of his times and presents a frank, vivid picture of a personally and professionally passionate man, interlaced with an account of his major scientific achievements.
Lo scibile matematico si espande a un ritmo vertiginoso. Nel corso degli ultimi cinquant'anni sono stati dimostrati piu teoremi che nei precedenti millenni della storia umana. Per illustrare la ricchezza della matematica del Novecento, il presente volume porta sulla ribalta alcuni dei protagonisti di questa straordinaria impresa intellettuale, che ha messo a nostra disposizione nuovi e potenti strumenti per indagare la realta che ci circonda. Presentando matematici famosi accanto ad altri meno noti al grande pubblico - da Hilbert a Godel, da Turing a Nash, da De Giorgi a Wiles - i ritratti raccolti in questo volume ci presentano personaggi dal forte carisma personale, dai vasti interessi culturali, appassionati nel difendere l'importanza delle proprie ricerche, sensibili alla bellezza, attenti ai problemi sociali e politici del loro tempo. Ne risulta un affresco che documenta la centralita della matematica nella cultura, non solo scientifica ma anche filosofica, artistica e letteraria, del nostro tempo, in un continuo gioco di scambi e di rimandi, di corrispondenze e di suggestioni.
This collection of new essays offers a "state-of-the-art" conspectus of major trends in the philosophy of logic and philosophy of mathematics. A distinguished group of philosophers addresses issues at the center of contemporary debate: semantic and set-theoretic paradoxes, the set/class distinction, foundations of set theory, mathematical intuition and many others. The volume includes Hilary Putnam's 1995 Alfred Tarski lectures published here for the first time. The essays are presented to honor the work of Charles Parsons.
Durante la II guerra mondiale hanno avuto luogo numerosi risultati di rilievo nel campo della crittografia militare. Uno dei meno conosciuti e quello usato dal servizio di intelligence svedese, nei confronti del codice tedesco per le comunicazioni strategiche con i comandi dei paesi occupati nel nord Europa, le cui linee passavano per la Svezia. In tal modo, durante la fase piu critica della guerra la direzione politica e militare svedese era in grado di seguire i piani e le disposizioni dei Tedeschi, venendo a conoscenza dei piu arditi progetti per modificare la propria politica, tenendo la Svezia fuori dalla guerra. La violazione del codice tedesco e narrata in dettaglio, per la prima volta, con elementi che gli permettono di essere un ottima introduzione al campo della crittografia, oltre che un ritratto vitale e umano della societa del tempo: una disperata condizione bellica, l'intrigo politico e spionistico, il genio del matematico Arne Beurling, le difficolta e i trucchi del mestiere, e il lavoro sistematico e oscuro di una folla di decrittatori.
The design inference uncovers intelligent causes by isolating their key trademark: specified events of small probability. Just about anything that happens is highly improbable, but when a highly improbable event is also specified (i.e. conforms to an independently given pattern) undirected natural causes lose their explanatory power. Design inferences can be found in a range of scientific pursuits from forensic science to research into the origins of life to the search for extraterrestrial intelligence. This challenging and provocative 1998 book shows how incomplete undirected causes are for science and breathes new life into classical design arguments. It will be read with particular interest by philosophers of science and religion, other philosophers concerned with epistemology and logic, probability and complexity theorists, and statisticians.
Guicciardini presents a comprehensive survey of both the research and teaching of Newtonian calculus, the calculus of "fluxions", over the period between 1700 and 1810. Although Newton was one of the inventors of calculus, the developments in Britain remained separate from the rest of Europe for over a century. While it is usually maintained that after Newton there was a period of decline in British mathematics, the author's research demonstrates that the methods used by researchers of the period yielded considerable success in laying the foundations and investigating the applications of the calculus. Even when "decline" set in, in mid century, the foundations of the reform were being laid, which were to change the direction and nature of the mathematics community. The book considers the importance of Isaac Newton, Roger Cotes, Brook Taylor, James Stirling, Abraham de Moivre, Colin Maclaurin, Thomas Bayes, John Landen and Edward Waring. This will be a useful book for students and researchers in the history of science, philosophers of science and undergraduates studying the history of mathematics.
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
Bayesian ideas have recently been applied across such diverse fields as philosophy, statistics, economics, psychology, artificial intelligence, and legal theory. Fundamentals of Bayesian Epistemology examines epistemologists' use of Bayesian probability mathematics to represent degrees of belief. Michael G. Titelbaum provides an accessible introduction to the key concepts and principles of the Bayesian formalism, enabling the reader both to follow epistemological debates and to see broader implications Volume 1 begins by motivating the use of degrees of belief in epistemology. It then introduces, explains, and applies the five core Bayesian normative rules: Kolmogorov's three probability axioms, the Ratio Formula for conditional degrees of belief, and Conditionalization for updating attitudes over time. Finally, it discusses further normative rules (such as the Principal Principle, or indifference principles) that have been proposed to supplement or replace the core five. Volume 2 gives arguments for the five core rules introduced in Volume 1, then considers challenges to Bayesian epistemology. It begins by detailing Bayesianism's successful applications to confirmation and decision theory. Then it describes three types of arguments for Bayesian rules, based on representation theorems, Dutch Books, and accuracy measures. Finally, it takes on objections to the Bayesian approach and alternative formalisms, including the statistical approaches of frequentism and likelihoodism.
Questo volume raccoglie lo scambio epistolare tra Cantor e Dedekind, finora edito parte in tedesco e parte in francese. Sara la prima edizione italiana completa di questo fondamentale carteggio, in cui si vedono nascere la nozione di cardinale e ordinale transfiniti, in cui si dimostra la non numerabilita dell'insieme dei numeri reali R e si leggono i primi tentativi e le correzioni alla costruzione di una biiezione tra R e R2, e le discussioni fra Cantor e Dedekind sull'invarianza della nozione di dimensione. "Pochi scritti matematici possono competere - scrive Pietro Nastasi nell'Introduzione - con questa corrispondenza nell'evidenziare il complesso intreccio psicologico che presiede all'invenzione matematica. E nessun lavoro storiografico potrebbe far emergere, meglio di queste lettere, la differenza fra le due personalita implicate: focosa e fantasiosa quella di Cantor, pacata e critica quella del piu anziano amico".
Professor Morgenstern's deep interests in economic time series and problems of measurement are represented by path-breaking articles devoted to the application of modern statistical analysis to temporal economic data. Originally published in 1967. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Hermann Weyl (1885-1955) was one of the twentieth century's most important mathematicians, as well as a seminal figure in the development of quantum physics and general relativity. He was also an eloquent writer with a lifelong interest in the philosophical implications of the startling new scientific developments with which he was so involved. "Mind and Nature" is a collection of Weyl's most important general writings on philosophy, mathematics, and physics, including pieces that have never before been published in any language or translated into English, or that have long been out of print. Complete with Peter Pesic's introduction, notes, and bibliography, these writings reveal an unjustly neglected dimension of a complex and fascinating thinker. In addition, the book includes more than twenty photographs of Weyl and his family and colleagues, many of which are previously unpublished. Included here are Weyl's exposition of his important synthesis of electromagnetism and gravitation, which Einstein at first hailed as "a first-class stroke of genius"; two little-known letters by Weyl and Einstein from 1922 that give their contrasting views on the philosophical implications of modern physics; and an essay on time that contains Weyl's argument that the past is never completed and the present is not a point. Also included are two book-length series of lectures, "The Open World" (1932) and "Mind and Nature" (1934), each a masterly exposition of Weyl's views on a range of topics from modern physics and mathematics. Finally, four retrospective essays from Weyl's last decade give his final thoughts on the interrelations among mathematics, philosophy, and physics, intertwined with reflections on the course of his rich life.
Brilliant introduction to the philosophy of mathematics, from the question 'what is a number?' up to the concept of infinity, descriptions, classes and axioms Russell deploys all his skills and brilliant prose to write an introductory book - a real gem by one of the 20th century's most celebrated philosophers New foreword by Michael Potter to the Routledge Classics edition places the book in helpful context and explains why it's a classic
This distinctive anthology includes many of the most important
recent contributions to the philosophy of mathematics. The featured
papers are organized thematically, rather than chronologically, to
provide the best overview of philosophical issues connected with
mathematics and the development of mathematical knowledge. Coverage
ranges from general topics in mathematical explanation and the
concept of number, to specialized investigations of the ontology of
mathematical entities and the nature of mathematical truth, models
and methods of mathematical proof, intuitionistic mathematics, and
philosophical foundations of set theory. This volume explores the central problems and exposes intriguing
new directions in the philosophy of mathematics, making it an
essential teaching resource, reference work, and research
guide. The book complements "Philosophy of Logic: An Anthology" and "A Companion to Philosophical Logic, "also edited by Dale Jacquette (Blackwell 2001).
Presenter l'analyse de base en suivant grosso modo l'ordre suivant laquelle elle a ete decouverte, voici le fil conducteur de cet ouvrage. Complete par un grand nombre de dessins, d'exemples et de contre-exemples, cet ouvrage est redige avec un veritable souci de pedagogie. Il est truffe de remarques historiques et de commentaires explicitant la motivation profonde des developpements exposes.
"Geschichte der Analysis" ist von einem internationalen Expertenteam geschrieben und stellt die gegenwartig umfassendste Darstellung der Herausbildung und Entwicklung dieser mathematischen Kerndisziplin dar. Der tiefgreifende begriffliche Wandel, den die Analysis im Laufe der Zeit durchgemacht hat, wird ebenso dargestellt, wie auch der Einfluss, den vor allem physikalische Probleme gehabt haben. Biographische und philosophische Hintergrunde werden ausgeleuchtet und ihre Relevanz fur die Theorieentwicklung gezeigt. Neben der eigentlichen Geschichte der Analysis bis ungefahr 1900 enthalt das Buch Spezialkapitel uber die Entwicklung der analytischen Mechanik im 18. Jahrhundert, Randwertprobleme der mathematischen Physik im 19. Jahrhundert, die Theorie der komplexen Funktionen, die Grundlagenkrise sowie historische Uberblicke uber die Variationsrechnung, Differentialgleichungen und Funktionalanalysis."
L'opera, pubblicata, anche per questa edizione, come Supplemento alla rivista LETTERA MATEMATICA, e frutto del convegno 'Matematica e Cultura' organizzato a Venezia nel Marzo 1998. Il convegno, giunto nel Marzo 1998 alla sua seconda edizione, si propone come un ponte tra i diversi aspetti del sapere umano. Pur avendo come punto di riferimento la matematica, si rivolge a tutti coloro che hanno curiosita e interessi culturali anche e soprattutto al di fuori della matematica. Nel volume si parla pertanto di musica, cinema, di arte, di filosofia, di letteratura, di internet e mass-media.
This publication includes an unabridged and annotated translation of two works by Johann Heinrich Lambert (1728-1777) written in the 1760s: Vorlaufige Kenntnisse fur die, so die Quadratur und Rectification des Circuls suchen and Memoire sur quelques proprietes remarquables des quantites transcendentes circulaires et logarithmiques. The translations are accompanied by a contextualised study of each of these works and provide an overview of Lambert's contributions, showing both the background and the influence of his work. In addition, by adopting a biographical approach, it allows readers to better get to know the scientist himself. Lambert was a highly relevant scientist and polymath in his time, admired by the likes of Kant, who despite having made a wide variety of contributions to different branches of knowledge, later faded into an undeserved secondary place with respect to other scientists of the eighteenth century. In mathematics, in particular, he is famous for his research on non-Euclidean geometries, although he is likely best known for having been the first who proved the irrationality of pi. In his Memoire, he conducted one of the first studies on hyperbolic functions, offered a surprisingly rigorous proof of the irrationality of pi, established for the first time the modern distinction between algebraic and transcendental numbers, and based on such distinction, he conjectured the transcendence of pi and therefore the impossibility of squaring the circle.
Matrices offer some of the most powerful techniques in modem mathematics. In the social sciences they provide fresh insights into an astonishing variety of topics. Dominance matrices can show how power struggles in offices or committees develop; Markov chains predict how fast news or gossip will spread in a village; permutation matrices illuminate kinship structures in tribal societies. All these invaluable techniques and many more are explained clearly and simply in this wide-ranging book. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
A guide to the practical art of plausible reasoning, this book has relevance in every field of intellectual activity. Professor Polya, a world-famous mathematician from Stanford University, uses mathematics to show how hunches and guesses play an important part in even the most rigorously deductive science. He explains how solutions to problems can be guessed at; good guessing is often more important than rigorous deduction in finding correct solutions. Vol. II, on Patterns of Plausible Inference, attempts to develop a logic of plausibility. What makes some evidence stronger and some weaker? How does one seek evidence that will make a suspected truth more probable? These questions involve philosophy and psychology as well as mathematics.
People who learn to solve problems ‘on the job’ often have to do it differently from people who learn in theory. Practical knowledge and theoretical knowledge is different in some ways but similar in other ways - or else one would end up with wrong solutions to the problems. Mathematics is also like this. People who learn to calculate, for example, because they are involved in commerce frequently have a more practical way of doing mathematics than the way we are taught at school. This book is about the differences between what we call practical knowledge of mathematics - that is street mathematics - and mathematics learned in school, which is not learned in practice. The authors look at the differences between these two ways of solving mathematical problems and discuss their advantages and disadvantages. They also discuss ways of trying to put theory and practice together in mathematics teaching.
Die Schwierigkeit Mathematik zu lernen und zu lehren ist jedem bekannt, der einmal mit diesem Fach in Beruhrung gekommen ist. Begriffe wie "reelle oder komplexe Zahlen, Pi" sind zwar jedem gelaufig, aber nur wenige wissen, was sich wirklich dahinter verbirgt. Die Autoren dieses Bandes geben jedem, der mehr wissen will als nur die Hulle der Begriffe, eine meisterhafte Einfuhrung in die Magie der Mathematik und schlagen einzigartige Brucken fur Studenten. Die Rezensenten der ersten beiden Auflagen uberschlugen sich." |
![]() ![]() You may like...
The Accidental Mayor - Herman Mashaba…
Michael Beaumont
Paperback
![]()
|