![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
Building on the seminal work of Kit Fine in the 1980s, Leon Horsten here develops a new theory of arbitrary entities. He connects this theory to issues and debates in metaphysics, logic, and contemporary philosophy of mathematics, investigating the relation between specific and arbitrary objects and between specific and arbitrary systems of objects. His book shows how this innovative theory is highly applicable to problems in the philosophy of arithmetic, and explores in particular how arbitrary objects can engage with the nineteenth-century concept of variable mathematical quantities, how they are relevant for debates around mathematical structuralism, and how they can help our understanding of the concept of random variables in statistics. This fully worked through theory will open up new avenues within philosophy of mathematics, bringing in the work of other philosophers such as Saul Kripke, and providing new insights into the development of the foundations of mathematics from the eighteenth century to the present day.
We use addition on a daily basis--yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research. Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series--long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+...=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms--the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem. Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.
The Oxford Handbook of Philosophy of Economics is a cutting-edge reference work to philosophical issues in the practice of economics. It is motivated by the view that there is more to economics than general equilibrium theory, and that the philosophy of economics should reflect the diversity of activities and topics that currently occupy economists. Contributions in the Handbook are thus closely tied to ongoing theoretical and empirical concerns in economics. Contributors include both philosophers of science and economists. Chapters fall into three general categories: received views in philosophy of economics, ongoing controversies in microeconomics, and issues in modeling, macroeconomics, and development. Specific topics include methodology, game theory, experimental economics, behavioral economics, neuroeconomics, computational economics, data mining, interpersonal comparisons of utility, measurement of welfare and well being, growth theory and development, and microfoundations of macroeconomics. The Oxford Handbook of Philosophy of Economics is a groundbreaking reference like no other in its field. It is a central resource for those wishing to learn about the philosophy of economics, and for those who actively engage in the discipline, from advanced undergraduates to professional philosophers, economists, and historians.
Includes several classic essays from the first edition, a representative selection of the most influential work of the past twenty years, a substantial introduction, and an extended bibliography. Originally published by Prentice-Hall in 1964.
Category theory is a branch of abstract algebra with incredibly diverse applications. This text and reference book is aimed not only at mathematicians, but also researchers and students of computer science, logic, linguistics, cognitive science, philosophy, and any of the other fields in which the ideas are being applied. Containing clear definitions of the essential concepts, illuminated with numerous accessible examples, and providing full proofs of all important propositions and theorems, this book aims to make the basic ideas, theorems, and methods of category theory understandable to this broad readership. Although assuming few mathematical pre-requisites, the standard of mathematical rigour is not compromised. The material covered includes the standard core of categories; functors; natural transformations; equivalence; limits and colimits; functor categories; representables; Yoneda's lemma; adjoints; monads. An extra topic of cartesian closed categories and the lambda-calculus is also provided - a must for computer scientists, logicians and linguists! This Second Edition contains numerous revisions to the original text, including expanding the exposition, revising and elaborating the proofs, providing additional diagrams, correcting typographical errors and, finally, adding an entirely new section on monoidal categories. Nearly a hundred new exercises have also been added, many with solutions, to make the book more useful as a course text and for self-study.
This book is an attempt to change our thinking about thinking. Anna Sfard undertakes this task convinced that many long-standing, seemingly irresolvable quandaries regarding human development originate in ambiguities of the existing discourses on thinking. Standing on the shoulders of Vygotsky and Wittgenstein, the author defines thinking as a form of communication. The disappearance of the time-honoured thinking-communicating dichotomy is epitomised by Sfard's term, commognition, which combines communication with cognition. The commognitive tenet implies that verbal communication with its distinctive property of recursive self-reference may be the primary source of humans' unique ability to accumulate the complexity of their action from one generation to another. The explanatory power of the commognitive framework and the manner in which it contributes to our understanding of human development is illustrated through commognitive analysis of mathematical discourse accompanied by vignettes from mathematics classrooms.
New to the Fourth Edition Reorganised and revised chapter seven and thirteen New exercises and examples Expanded, updated references Further historical material on figures besides Galois: Omar Khayyam, Vandermonde, Ruffini, and Abel A new final chapter discussing other directions in which Galois Theory has developed: the inverse Galois problem, differential Galois theory, and a (very) brief introduction to p-adic Galois representations.
Not all scientific explanations work by describing causal connections between events or the world's overall causal structure. Some mathematical proofs explain why the theorems being proved hold. In this book, Marc Lange proposes philosophical accounts of many kinds of non-causal explanations in science and mathematics. These topics have been unjustly neglected in the philosophy of science and mathematics. One important kind of non-causal scientific explanation is termed explanation by constraint. These explanations work by providing information about what makes certain facts especially inevitable - more necessary than the ordinary laws of nature connecting causes to their effects. Facts explained in this way transcend the hurly-burly of cause and effect. Many physicists have regarded the laws of kinematics, the great conservation laws, the coordinate transformations, and the parallelogram of forces as having explanations by constraint. This book presents an original account of explanations by constraint, concentrating on a variety of examples from classical physics and special relativity. This book also offers original accounts of several other varieties of non-causal scientific explanation. Dimensional explanations work by showing how some law of nature arises merely from the dimensional relations among the quantities involved. Really statistical explanations include explanations that appeal to regression toward the mean and other canonical manifestations of chance. Lange provides an original account of what makes certain mathematical proofs but not others explain what they prove. Mathematical explanation connects to a host of other important mathematical ideas, including coincidences in mathematics, the significance of giving multiple proofs of the same result, and natural properties in mathematics. Introducing many examples drawn from actual science and mathematics, with extended discussions of examples from Lagrange, Desargues, Thomson, Sylvester, Maxwell, Rayleigh, Einstein, and Feynman, Because Without Cause's proposals and examples should set the agenda for future work on non-causal explanation.
In line with the emerging field of philosophy of mathematical practice, this book pushes the philosophy of mathematics away from questions about the reality and truth of mathematical entities and statements and toward a focus on what mathematicians actually do--and how that evolves and changes over time. How do new mathematical entities come to be? What internal, natural, cognitive, and social constraints shape mathematical cultures? How do mathematical signs form and reform their meanings? How can we model the cognitive processes at play in mathematical evolution? And how does mathematics tie together ideas, reality, and applications? Roi Wagner uniquely combines philosophical, historical, and cognitive studies to paint a fully rounded image of mathematics not as an absolute ideal but as a human endeavor that takes shape in specific social and institutional contexts. The book builds on ancient, medieval, and modern case studies to confront philosophical reconstructions and cutting-edge cognitive theories. It focuses on the contingent semiotic and interpretive dimensions of mathematical practice, rather than on mathematics' claim to universal or fundamental truths, in order to explore not only what mathematics is, but also what it could be. Along the way, Wagner challenges conventional views that mathematical signs represent fixed, ideal entities; that mathematical cognition is a rigid transfer of inferences between formal domains; and that mathematics' exceptional consensus is due to the subject's underlying reality. The result is a revisionist account of mathematical philosophy that will interest mathematicians, philosophers, and historians of science alike.
The mysterious beauty, harmony, and consistency of mathematics once caused philosopher Hilary Putnam to term its existence a "miracle." Now, advances in the understanding of physics suggest that the foundations of mathematics are encompassed by the laws of nature, an idea that sheds new light on both mathematics and physics. The philosophical relationship between mathematics and the natural sciences is the subject of "Converging Realities," the latest work by one of the leading thinkers on the subject. Based on a simple but powerful idea, it shows that the axioms needed for the mathematics used in physics can also generate practically every field of contemporary pure mathematics. It also provides a foundation for current investigations in string theory and other areas of physics. This approach to the nature of mathematics is not really new, but it became overshadowed by formalism near the end of nineteenth century. The debate turned eventually into an exclusive dialogue between mathematicians and philosophers, as if physics and nature did not exist. This unsatisfactory situation was enforced by the uncertain standing of physical reality in quantum mechanics. The recent advances in the interpretation of quantum mechanics (as described in "Quantum Philosophy," also by Omnes) have now reconciled the foundations of physics with objectivity and common sense. In Converging Realities, Roland Omnes is among the first scholars to consider the connection of natural laws with mathematics."
Why bother to praise mathematics when you claim, as Alain Badiou does, that philosophy is first and foremost a metaphysics of happiness, or else it s not worth an hour of trouble? What possible relationship can there be between mathematics and happiness? That is precisely the issue at stake in this dialogue, which serves as a very accessible introduction to what mathematics is and an exploration of the crucial influence it has always exerted on the greatest philosophers. Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.
A stimulating intellectual history of Ptolemy's philosophy and his conception of a world in which mathematics reigns supreme The Greco-Roman mathematician Claudius Ptolemy is one of the most significant figures in the history of science. He is remembered today for his astronomy, but his philosophy is almost entirely lost to history. This groundbreaking book is the first to reconstruct Ptolemy's general philosophical system-including his metaphysics, epistemology, and ethics-and to explore its relationship to astronomy, harmonics, element theory, astrology, cosmology, psychology, and theology. In this stimulating intellectual history, Jacqueline Feke uncovers references to a complex and sophisticated philosophical agenda scattered among Ptolemy's technical studies in the physical and mathematical sciences. She shows how he developed a philosophy that was radical and even subversive, appropriating ideas and turning them against the very philosophers from whom he drew influence. Feke reveals how Ptolemy's unique system is at once a critique of prevailing philosophical trends and a conception of the world in which mathematics reigns supreme. A compelling work of scholarship, Ptolemy's Philosophy demonstrates how Ptolemy situated mathematics at the very foundation of all philosophy-theoretical and practical-and advanced the mathematical way of life as the true path to human perfection.
The traditional debate among philosophers of mathematics is whether there is an external mathematical reality, something out there to be discovered, or whether mathematics is the product of the human mind. This provocative book, now available in a revised and expanded paperback edition, goes beyond foundationalist questions to offer what has been called a "postmodern" assessment of the philosophy of mathematics--one that addresses issues of theoretical importance in terms of mathematical experience. By bringing together essays of leading philosophers, mathematicians, logicians, and computer scientists, Thomas Tymoczko reveals an evolving effort to account for the nature of mathematics in relation to other human activities. These accounts include such topics as the history of mathematics as a field of study, predictions about how computers will influence the future organization of mathematics, and what processes a proof undergoes before it reaches publishable form. This expanded edition now contains essays by Penelope Maddy, Michael D. Resnik, and William P. Thurston that address the nature of mathematical proofs. The editor has provided a new afterword and a supplemental bibliography of recent work.
"Casti Tours offers the most spectacular vistas of modern applied mathematics."— Nature Mathematical modeling is about rules—the rules of reality. Reality Rules explores the syntax and semantics of the language in which these rules are written, the language of mathematics. Characterized by the clarity and vision typical of the author's previous books, Reality Rules is a window onto the competing dialects of this language—in the form of mathematical models of real-world phenomena—that researchers use today to frame their views of reality. Moving from the irreducible basics of modeling to the upper reaches of scientific and philosophical speculation, Volumes 1 and 2, The Fundamentals and The Frontier, are ideal complements, equally matched in difficulty, yet unique in their coverage of issues central to the contemporary modeling of complex systems. Engagingly written and handsomely illustrated, Reality Rules is a fascinating journey into the conceptual underpinnings of reality itself, one that examines the major themes in dynamical system theory and modeling and the issues related to mathematical models in the broader contexts of science and philosophy. Far-reaching and far-sighted, Reality Rules is destined to shape the insight and work of students, researchers, and scholars in mathematics, science, and the social sciences for generations to come. Of related interest . . . ALTERNATE REALITIES Mathematical Models of Nature and Man John L. Casti A thoroughly modern account of the theory and practice of mathematical modeling with a treatment focusing on system-theoretic concepts such as complexity, self-organization, adaptation, bifurcation, resilience, surprise and uncertainty, and the mathematical structures needed to employ these in a formal system. 1989 0-471-61842-X 493pp.
In Cognition, Content, and the A Priori, Robert Hanna works out a unified contemporary Kantian theory of rational human cognition and knowledge. Along the way, he provides accounts of (i) intentionality and its contents, including non-conceptual content and conceptual content, (ii) sense perception and perceptual knowledge, including perceptual self-knowledge, (iii) the analytic-synthetic distinction, (iv) the nature of logic, and (v) a priori truth and knowledge in mathematics, logic, and philosophy. This book is specifically intended to reach out to two very different audiences: contemporary analytic philosophers of mind and knowledge on the one hand, and contemporary Kantian philosophers or Kant-scholars on the other. At the same time, it is also riding the crest of a wave of exciting and even revolutionary emerging new trends and new work in the philosophy of mind and epistemology, with a special concentration on the philosophy of perception. What is revolutionary in this new wave are its strong emphases on action, on cognitive phenomenology, on disjunctivist direct realism, on embodiment, and on sense perception as a primitive and proto-rational capacity for cognizing the world. Cognition, Content, and the A Priori makes a fundamental contribution to this philosophical revolution by giving it a specifically contemporary Kantian twist, and by pushing these new lines of investigation radically further.
Dieser Band fuhrt 16 Aufsatze von Herbert Breger zusammen, die um Leibniz' Arbeiten zur Mathematik und Physik und ihre philosophischen Voraussetzungen kreisen. Drei interessante und ungewoehnliche Aspekte stehen hierbei im Vordergrund: Kontinuum, Analysis und Informales. Leibniz' Kontinuum und seine Analysis sind gerade wegen ihres Unterschieds zur heutigen Mathematik interessant. Anhand zahlreicher Beispiele wird ferner die Frage nach dem Verhaltnis zwischen der mathematischen Rationalitat und der Kunst gestellt und die nach den engen Beziehungen zwischen Mathematik und Philosophie bei Leibniz eroertert. Es wird gezeigt, dass der Leibniz zugeschriebene Brief zum Prinzip der kleinsten Wirkung, der Anlass zu einem Streit zwischen Maupertuis, Samuel Koenig und Voltaire wurde, eine Falschung war. Das Buch erscheint im Leibniz-Jahr 2016, in dem auch der X. Leibniz-Kongress stattfindet.
Aus dem Vorwort: "Die Ergebnisse, Methoden und Begriffe, die die mathematische Wissenschaft dem Forscher ISSAI SCHUR verdankt, haben ihre nachhaltige Wirkung bis in die Gegenwart hinein erwiesen und werden sie unverandert beibehalten. Immer wieder wird auf Unter suchungen von SCHUR zuruckgegriffen, werden Erkenntnisse von ihm benutzt oder fortgefuhrt und werden Vermutungen von ihm bestatigt... Die Besonderheit des mathematischen Schaffens von SCHUR hat einst MAX PLANCK, als Sekretar der physikalisch-mathematischen Klasse der Preussischen Akademie der Wissenschaften zu Berlin, gut gekennzeichnet. In seiner Erwiderung auf die Antrittsrede von SCHUR bei dessen Aufnahme als ordentliches Mitglied der Akademie am 29. Juni 1922 bezeugte er, dass SCHUR "wie nur wenige Mathematiker die grosse Abelsche Kunst ube, die Probleme richtig zu formulieren, passend umzuformen, geschickt zu teilen und dann einzeln zu bewaltigen"."Band II enthalt 34 von Issai Schur im Zeitraum von 1912 bis 1924 verfasste Artikel.
Dieses Buch bietet einen historisch orientierten Einstieg in die Algorithmik, also die Lehre von den Algorithmen, in Mathematik, Informatik und daruber hinaus. Besondere Merkmale und Zielsetzungen sind: Elementaritat und Anschaulichkeit, die Berucksichtigung der historischen Entwicklung, Motivation der Begriffe und Verfahren anhand konkreter, aussagekraftiger Beispiele unter Einbezug moderner Werkzeuge (Computeralgebrasysteme, Internet). Als Zusatzmedien werden computer- und internetspezifische Interaktions- und Visualisierungsmoeglichkeiten (kostenlos) zur Verfugung gestellt. Das Werk wendet sich an Studierende und Lehrende an Schulen und Hochschulen sowie an Nichtspezialisten, die an den Themen "Computer/Algorithmen/Programmierung" einschliesslich ihrer historischen und geisteswissenschaftlichen Dimension interessiert sind.
Die Gesammelten Abhandlungen von Ferdinand Georg Frobenius erscheinen in drei Banden. Band I enthalt in chronologischer Abfolge seine Veroeffentlichungen von 1870 bis 1880, Band II jene von 1880 bis 1896, und Band III die Artikel von 1896 bis 1917. Band II umfasst die Artikel Nr. 22 bis 52. R. Brauer: ...if the reader wants to get an idea about the importance of Frobenius work today, all he has to do is to look at books and papers on groups...
Die Gesammelten Abhandlungen von Ferdinand Georg Frobenius erscheinen in drei Banden. Band I enthalt in chronologischer Abfolge seine Veroeffentlichungen von 1870 bis 1880, Band II jene von 1880 bis 1896, und Band III die Artikel von 1896 bis 1917. Band III umfasst die Veroeffentlichungen Nr. 53 bis 107. R. Brauer: ...if the reader wants to get an idea about the importance of Frobenius work today, all he has to do is to look at books and papers on groups...
Aus dem Vorwort: "Die Ergebnisse, Methoden und Begriffe, die die mathematische Wissenschaft dem Forscher ISSAI SCHUR verdankt, haben ihre nachhaltige Wirkung bis in die Gegenwart hinein erwiesen und werden sie unverandert beibehalten. Immer wieder wird auf Unter suchungen von SCHUR zuruckgegriffen, werden Erkenntnisse von ihm benutzt oder fortgefuhrt und werden Vermutungen von ihm bestatigt... Die Besonderheit des mathematischen Schaffens von SCHUR hat einst MAX PLANCK, als Sekretar der physikalisch-mathematischen Klasse der Preussischen Akademie der Wissenschaften zu Berlin, gut gekennzeichnet. In seiner Erwiderung auf die Antrittsrede von SCHUR bei dessen Aufnahme als ordentliches Mitglied der Akademie am 29. Juni 1922 bezeugte er, dass SCHUR "wie nur wenige Mathematiker die grosse Abelsche Kunst ube, die Probleme richtig zu formulieren, passend umzuformen, geschickt zu teilen und dann einzeln zu bewaltigen"."Band III enthalt 28 von Issai Schur verfasste Artikel ab 1925 sowie u.a. Inhalte aus dem nicht veroeffentlichten Nachlass.
Originaltext und historischer und mathematischer Kommentar von Klaus VolkertDavid Hilberts "Festschrift" Grundlagen der Geometrie" aus dem Jahre 1899 wurde zu einem der einflussreichsten Texte der Mathematikgeschichte. Wie kein anderes Werk pragte es die Mathematik des 20. Jahrhunderts und ist auch heute noch von groesstem Interesse. Aus der Perspektive eines Mathematikhistorikers schildert der Herausgeber die Entwicklung einer Axiomatik der Geometrie, die spatestens mit Euklids "Elemente" (ca. 300 v. u. Z.) begann und erst durch Hilbert zu einem vollstandigen und handhabbaren System gefuhrt wurde. Nach einer ausfuhrlichen Erlauterung des Hilbertschen Textes wird seine Rezeption bis 1905 umfassend dargestellt und daran anschliessend viele der von ihm ausgehenden weiteren direkten und indirekten Entwicklungen skizziert. Die Faszination des Textes ist auch dem heutigen Leser direkt zuganglich, da Hilberts axiomatischer Ansatz ohne mengentheoretische Argumente oder formale Logik auskommt.
Der Band enthalt zum ersten Mal in deutscher Sprache grundlegende Themen der chinesischen und indischen Mathematik, die den Nahrboden fur spatere Fragestellungen bereiten. Die nicht zu uberschatzende Rolle, die islamische Gelehrte bei der Entwicklung der Algebra und der Verbreitung des Ziffernsystems gespielt haben, wird in exemplarischen Episoden veranschaulicht. Unterhaltsam wird geschildert, wie Fibonacci die orientalische Aufgabenkultur nach Italien bringt. Zahlreiche Beispiele demonstrieren das neue kaufmannische Rechnen, dessen Methoden sich in ganz Europa verbreiten. In Deutschland erwachst eine neue Generation von Rechenmeistern, die mit ihren erstmals im Druck verbreiteten Schriften eine ungeheure Popularisierung des Rechnens bewirken. UEberraschende Einblicke in die Historie bieten die Kapitel uber die Vermittlung mathematischen Wissens in Kloestern und Universitaten. Das Buch ist eine Fundgrube fur historisch Interessierte; zahlreiche Aufgaben bieten vergnuglichen Stoff fur Unterricht, Vorlesung und Selbststudium.
Die Ergebnisse, Methoden und Begriffe, die die mathematische Wissenschaft dem Forscher ISSAr SCHUR verdankt, haben ihre nachhaltige Wirkung bis in die Gegenwart hinein erwiesen und werden sie unverandert beibehalten. Immer wieder wird auf Unter- suchungen von SCHUR zuriickgegriffen, werden Erkenntnisse von ihm benutzt oder fortgefiihrt und werden Vermutungen von ihm bestatigt. Daher ist es sehr zu begriifien, dafi sich der Springer-Verlag bereit erklart hat, die wissenschaftlichen Veroffentlichungen von I. SCHUR als Gesammelte Abhandlungen herauszugeben. Die Besonderheit des mathematischen Schaffens von SCHUR hat einst MAX PLANCK, als Sekretar der physikalisch-mathematischen Klasse der Preufiischen Akademie der Wissenschaften zu Berlin, gut gekennzeichnet. In seiner Erwiderung auf die Antrittsrede von SCHUR bei dessen Aufnahme als ordentliches Mitglied der Akademie am 29. Juni 1922 bezeugte er, dafi SCHUR wie nur wenige Mathematiker die grofie Abelsche Kunst iibe, die Probleme richtig zu formulieren, passend umzuformen, geschickt zu teilen und dann einzeln zu bewaltigen. Zum Gedacntnis an I. SCHUR gab die Schriftleitung der Mathematischen Zeitschrift 1955 einen Gedenkband heraus, aus dessen Vorrede wir folgendes entnehmen (Mathe- matische Zeitschrift 63, 1955/56): Aus Anlafi der 80. Wiederkehr des Tages, an dem Schur in Mohilew am Dnjepr geboren wurde, vereinen sich Freunde und Schiiler, urn sein Andenken mit diesem Bande der Zeitschrift zu ehren, die er selbst begriindet hat. |
![]() ![]() You may like...
Media ethics in South African context…
Lucas M. Oosthuizen
Paperback
![]()
Emerging Technologies in Intelligent…
V. Santhi, D P Acharjya, …
Hardcover
R6,388
Discovery Miles 63 880
Intelligent Wavelet Based Techniques for…
Rajiv Singh, Swati Nigam, …
Hardcover
R2,873
Discovery Miles 28 730
Investigation of Concentration of…
Temporary National Economic Committee
Paperback
R560
Discovery Miles 5 600
|