Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Philosophy of mathematics
The primary intent of this volume is to give the English reader access to all the philosophical texts published by Husserl between the appearance of his first book, Philosophie der Arithmetik, and that of his second book, Logische Untersuchungen- roughly, from 1890 through 1901. Along with these texts we have included a number of unpublished manuscripts from the same period and dealing with the same or closely related topics. A few of the texts here translated (the review of Pahigyi, the five "report" articles of 1903-1904, the "notes" in Lalande's Vocabulaire, and the brief discussion. article on Marty of 1910) obviously fall outside this time period, so far as their publication dates are concerned; but in content they seem clearly confined to it. The final piece translated, a set of personal notes that date from 1906 through 1908, provides insight into how Husserl experienced his early labors and their results, and into how he saw their relation to work before him: a phenomenological critique of reason in all of its forms. Thus the texts here translated - which obviously are to be read in conjunction with his first two books - cover the progression of Husserl's Problematik from the relatively narrow one of clarifying the epistemic structure of general arithmetic, to the all-encompassing one of establishing in principle, through phenomenological research, the line between legitimate and illegitimate claims to know or to be rational, regardless of the domain concerned.
In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, to the use of analogy, the prospects for a Bayesian confirmation theory, the notion of a mathematical research programme and the ways in which new concepts are justified. His inspiring book challenges both philosophers and mathematicians to develop the broadest and richest philosophical resources for work in their disciplines and points clearly to the ways in which this can be done.
This volume brings together a collection of essays on the history and philosophy of probability and statistics by one of the eminent scholars in these subjects. Written over the last fifteen years, they fall into three broad categories. The first deals with the use of symmetry arguments in inductive probability, in particular, their use in deriving rules of succession (Carnap's 'continuum of inductive methods'). The second group deals with four outstanding individuals who made lasting contributions to probability and statistics in very different ways: Frank Ramsey, R. A. Fisher, Alan Turing, and Abraham de Moivre. The last group of essays deals with the problem of 'predicting the unpredictable' - making predictions when the range of possible outcomes is unknown in advance. The essays weave together the history and philosophy of these subjects and document the fascination that they have exercised for more than three centuries.
This book is a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics. The book is divided into three parts. Part I, Reason, Science, and Mathematics contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay of phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope Maddy and Roger Penrose. Part III deals with elementary, constructive areas of mathematics. These are areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincave and Frege.
In this book, thirteen promising young researchers write on what they take to be the right philosophical account of mathematics and discuss where the philosophy of mathematics ought to be going. New trends are revealed, such as an increasing attention to mathematical practice, a reassessment of the canon, and inspiration from philosophical logic.
A sophisticated, original introduction to the philosophy of mathematics from one of its leading contemporary scholars Mathematics is one of humanity's most successful yet puzzling endeavors. It is a model of precision and objectivity, but appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic yet accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Written by Oystein Linnebo, one of the world's leading scholars on the subject, the book introduces all of the classical approaches to the field, including logicism, formalism, intuitionism, empiricism, and structuralism. It also contains accessible introductions to some more specialized issues, such as mathematical intuition, potential infinity, the iterative conception of sets, and the search for new mathematical axioms. The groundbreaking work of German mathematician and philosopher Gottlob Frege, one of the founders of analytic philosophy, figures prominently throughout the book. Other important thinkers whose work is introduced and discussed include Immanuel Kant, John Stuart Mill, David Hilbert, Kurt Godel, W. V. Quine, Paul Benacerraf, and Hartry H. Field. Sophisticated but clear and approachable, this is an essential introduction for all students and teachers of philosophy, as well as mathematicians and others who want to understand the foundations of mathematics.
The book emerges from several contemporary concerns in mathematics, language, and mathematics education. However, the book takes a different stance with respect to language by combining discussion of linguistics and mathematics using examples from each to illustrate the other. The picture that emerges is of a subject that is much more contingent, much more relative, much more subject to human experience than is usually accepted. Another way of expressing this, is that the thesis of the book takes the idea of mathematics as a human creation, and, using the evidence from language, comes to more radical conclusions than most writers allow.
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history
Belief revision is a topic of much interest in theoretical computer science and logic, and it forms a central problem in research into artificial intelligence. In simple terms: how do you update a database of knowledge in the light of new information? What if the new information is in conflict with something that was previously held to be true? An intelligent system should be able to accommodate all such cases. This book contains a collection of research articles on belief revision that are completely up to date and an introductory chapter that presents a survey of current research in the area and the fundamentals of the theory. Thus this volume will be useful as a textbook on belief revision.
The 17th century saw a dramatic development in mathematical theory and practice. With the recovery of many of the classical Greek mathematical texts, new techniques were developed, and within 100 years the rules of modern analytic geometry, geometry of indivisibles, arithmetic of infinites, and calculus had been developed. Although many technical studies have been devoted to these developments, Mancosu provides the first comprehensive account of the foundational issues raised in the relationship between mathematical advances of this period and philosophy of mathematics of the time.
Philosophical considerations, which are often ignored or treated casually, are given careful consideration in this introduction. Thomas Forster places the notion of inductively defined sets (recursive datatypes) at the center of his exposition resulting in an original analysis of well established topics. The presentation illustrates difficult points and includes many exercises. Little previous knowledge of logic is required and only a knowledge of standard undergraduate mathematics is assumed.
Die Mathematik im mittelalterlichen Islam hatte gro en Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen geh ren Dezimalrechnen, Geometrie, ebene und sph rische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterf hrenden Schule.
With a never-before published paper by Lord Henry Cavendish, as well as a biography on him, this book offers a fascinating discourse on the rise of scientific attitudes and ways of knowing. A pioneering British physicist in the late 18th and early 19th centuries, Cavendish was widely considered to be the first full-time scientist in the modern sense. Through the lens of this unique thinker and writer, this book is about the birth of modern science.
We are all captivated and puzzled by the infinite, in its many varied guises; by the endlessness of space and time; by the thought that between any two points in space, however close, there is always another; by the fact that numbers go on forever; and by the idea of an all-knowing, all-powerful God. In this acclaimed introduction to the infinite, A. W. Moore takes us on a journey back to early Greek thought about the infinite, from its inception to Aristotle. He then examines medieval and early modern conceptions of the infinite, including a brief history of the calculus, before turning to Kant and post-Kantian ideas. He also gives an account of Cantor's remarkable discovery that some infinities are bigger than others. In the second part of the book, Moore develops his own views, drawing on technical advances in the mathematics of the infinite, including the celebrated theorems of Skolem and Goedel, and deriving inspiration from Wittgenstein. He concludes this part with a discussion of death and human finitude. For this third edition Moore has added a new part, 'Infinity superseded', which contains two new chapters refining his own ideas through a re-examination of the ideas of Spinoza, Hegel, and Nietzsche. This new part is heavily influenced by the work of Deleuze. Also new for the third edition are: a technical appendix on still unresolved questions about different infinite sizes; an expanded glossary; and updated references and further reading. The Infinite, Third Edition is ideal reading for anyone interested in an engaging and historically informed account of this fascinating topic, whether from a philosophical point of view, a mathematical point of view, or a religious point of view.
This is the second volume of the first fully-fledged English translation of the works of Archimedes - antiquity's greatest scientist and one of the most important scientific figures in history. It covers On Spirals and is based on a reconsideration of the Greek text and diagrams, now made possible through new discoveries from the Archimedes Palimpsest. On Spirals is one of Archimedes' most dazzling geometrical tours de force, suggesting a manner of 'squaring the circle' and, along the way, introducing the attractive geometrical object of the spiral. The form of argument, no less than the results themselves, is striking, and Reviel Netz contributes extensive and insightful comments that focus on Archimedes' scientific style, making this volume indispensable for scholars of classics and the history of science, and of great interest for the scientists and mathematicians of today.
If mathematics is the purest form of knowledge, the perfect foundation of all the hard sciences, and a uniquely precise discipline, then how can the human brain, an imperfect and imprecise organ, process mathematical ideas? Is mathematics made up of eternal, universal truths? Or, as some have claimed, could mathematics simply be a human invention, a kind of tool or metaphor? These questions are among the greatest enigmas of science and epistemology, discussed at length by mathematicians, physicians, and philosophers. But, curiously enough, neuroscientists have been absent in the debate, even though it is precisely the field of neuroscience-which studies the brain's mechanisms for thinking and reasoning-that ought to be at the very center of these discussions. How our Emotions and Bodies are Vital for Abstract Thought explores the unique mechanisms of cooperation between the body, emotions, and the cortex, based on fundamental physical principles. It is these mechanisms that help us to overcome the limitations of our physiology and allow our imperfect, human brains to make transcendent mathematical discoveries. This book is written for anyone who is interested in the nature of abstract thought, including mathematicians, physicists, computer scientists, psychologists, and psychiatrists.
In his long-awaited new edition of Philosophy of Mathematics, James Robert Brown tackles important new as well as enduring questions in the mathematical sciences. Can pictures go beyond being merely suggestive and actually prove anything? Are mathematical results certain? Are experiments of any real value? This clear and engaging book takes a unique approach, encompassing non-standard topics such as the role of visual reasoning, the importance of notation, and the place of computers in mathematics, as well as traditional topics such as formalism, Platonism, and constructivism. The combination of topics and clarity of presentation make it suitable for beginners and experts alike. The revised and updated second edition of Philosophy of Mathematics contains more examples, suggestions for further reading, and expanded material on several topics including a novel approach to the continuum hypothesis.
Der Mathematiker Vito Volterra (1860 1940) war nicht nur ein grosser Mathematiker, sondern auch ein guter Wissenschaftsorganisator. Uber Jahrzehnte galt er als der bedeutendste Reprasentant der Wissenschaft in Italien. Die Autoren rekonstruieren seine wichtigsten Beitrage zur Wissenschaft und zur Entwicklung der wissenschaftlichen Institutionen in Italien und der Welt: von der Entwicklung der Funktionalanalysis uber die Untersuchung der Populationsdynamik bis zu seiner Lehrtatigkeit und der Grundung des staatlichen italienischen Forschungsrates."
This collection of new essays offers a "state-of-the-art" conspectus of major trends in the philosophy of logic and philosophy of mathematics. A distinguished group of philosophers addresses issues at the center of contemporary debate: semantic and set-theoretic paradoxes, the set/class distinction, foundations of set theory, mathematical intuition and many others. The volume includes Hilary Putnam's 1995 Alfred Tarski lectures published here for the first time. The essays are presented to honor the work of Charles Parsons.
Collection of the most interesting recent writings on the philosophy of mathematics written by highly respected researchers from philosophy, mathematics, physics, and chemistry Interdisciplinary book that will be useful in several fields with a cross-disciplinary subject area, and contributions from researchers of various disciplines
How can we identify events due to intelligent causes and distinguish them from events due to undirected natural causes? If we lack a causal theory how can we determine whether an intelligent cause acted? This book presents a reliable method for detecting intelligent causes: the design inference. The design inference uncovers intelligent causes by isolating the key trademark of intelligent causes: specified events of small probability. Design inferences can be found in a range of scientific pursuits from forensic science to research into the origins of life to the search for extraterrestrial intelligence. This challenging and provocative book will be read with particular interest by philosophers of science and religion, other philosophers concerned with epistemology and logic, probability and complexity theorists, and statisticians.
This book, written by one of philosophy's preeminent logicians, argues that many of the basic assumptions common to logic, philosophy of mathematics and metaphysics are in need of change. Jaakko Hintikka proposes a new basic first-order logic and uses it to explore the foundations of mathematics. This new logic enables logicians to express on the first-order level such concepts as equicardinality, infinity, and truth in the same language. Hintikka's new logic is highly original and will prove appealing to logicians, philosophers of mathematics, and mathematicians concerned with the foundations of the discipline.
Information is a central topic in computer science, cognitive science, and philosophy. In spite of its importance in the "information age," there is no consensus on what information is, what makes it possible, and what it means for one medium to carry information about another. Drawing on ideas from mathematics, computer science, and philosophy, this book addresses the definition and place of information in society. The authors, observing that information flow is possible only within a connected distribution system, provide a mathematically rigorous, philosophically sound foundation for a science of information. They illustrate their theory by applying it to a wide range of phenomena, from file transfer to DNA, from quantum mechanics to speech act theory.
Artists and scientists view the world in quite different ways. Nevertheless, they are united in a search for hidden order beneath surface appearances. The quest for eternal geometrical designs is also seen in the sacred mathematical patterns created by the world's great religions. Tibetan monks fashion chalk mandalas representing the emergence of order in the universe. Moslem architects wrap their buildings in elaborate abstract tessellating designs. Celestial Tapestry places mathematics within a vibrant cultural and historical context. Threads are woven together telling of surprising influences that pass between the Arts and Mathematics. The story involves intriguing characters: the soldier who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; the mathematician imprisoned for bigamy whose books had a huge influence on twentieth century art; the pioneer clockmaker who suffered from leprosy; the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. |
You may like...
Research in History and Philosophy of…
Maria Zack, Dirk Schlimm
Hardcover
R2,788
Discovery Miles 27 880
Mathematics, Logic, and their…
Mojtaba Mojtahedi, Shahid Rahman, …
Hardcover
R3,359
Discovery Miles 33 590
Conversations on Social Choice and…
Marc Fleurbaey, Maurice Salles
Hardcover
R3,954
Discovery Miles 39 540
Knowledge, Number and Reality…
Nils Kurbis, Bahram Assadian, …
Hardcover
R2,981
Discovery Miles 29 810
The Scientific Counter-Revolution - The…
Michael John Gorman
Hardcover
R3,307
Discovery Miles 33 070
Research in History and Philosophy of…
Maria Zack, Dirk Schlimm
Hardcover
R2,797
Discovery Miles 27 970
|